1,2, ..: Counting to infinity

Abdullah Naeem Malik

Qauid e Azam University
August 24th, 2015

How do we count?

- One sheep, two sheep, three sheep,...

How do we count?

- One sheep, two sheep, three sheep,...
- What if we're interested in knowing that two items have the same number? For example, nuts and bolts

How do we count?

- One sheep, two sheep, three sheep,...
- What if we're interested in knowing that two items have the same number? For example, nuts and bolts
- Simply pair each nut with a bolt and hope that they simultaneously run out!

Countable sets and cardinality

- X is countable if $\Longleftrightarrow \exists$ bijective $f: X \longrightarrow A \subset \mathbb{N}$ for finite A

Countable sets and cardinality

- X is countable if $\Longleftrightarrow \exists$ bijective $f: X \longrightarrow A \subset \mathbb{N}$ for finite A
- To each set X, assign the number card $X=|X|$

Countable sets and cardinality

- X is countable if $\Longleftrightarrow \exists$ bijective $f: X \longrightarrow A \subset \mathbb{N}$ for finite A
- To each set X, assign the number card $X=|X|$
- For any two sets X and $Y,|X|=|Y| \Longleftrightarrow \exists$ bijective $f: X \longrightarrow Y$

Countable sets and cardinality

- X is countable if $\Longleftrightarrow \exists$ bijective $f: X \longrightarrow A \subset \mathbb{N}$ for finite A
- To each set X, assign the number card $X=|X|$
- For any two sets X and $Y,|X|=|Y| \Longleftrightarrow \exists$ bijective $f: X \longrightarrow Y$
- $|X|=0 \Longleftrightarrow X=\varnothing$

Countable sets and cardinality

- X is countable if $\Longleftrightarrow \exists$ bijective $f: X \longrightarrow A \subset \mathbb{N}$ for finite A
- To each set X, assign the number card $X=|X|$
- For any two sets X and $Y,|X|=|Y| \Longleftrightarrow \exists$ bijective $f: X \longrightarrow Y$
- $|X|=0 \Longleftrightarrow X=\varnothing$
- For $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, then $|X|=k$

Countable sets and cardinality

- X is countable if $\Longleftrightarrow \exists$ bijective $f: X \longrightarrow A \subset \mathbb{N}$ for finite A
- To each set X, assign the number card $X=|X|$
- For any two sets X and $Y,|X|=|Y| \Longleftrightarrow \exists$ bijective $f: X \longrightarrow Y$
- $|X|=0 \Longleftrightarrow X=\varnothing$
- For $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, then $|X|=k$
- $|X| \leq|Y| \Longleftrightarrow \exists$ injective $f: X \longrightarrow Y$

Countable sets and cardinality

- X is countable if $\Longleftrightarrow \exists$ bijective $f: X \longrightarrow A \subset \mathbb{N}$ for finite A
- To each set X, assign the number card $X=|X|$
- For any two sets X and $Y,|X|=|Y| \Longleftrightarrow \exists$ bijective $f: X \longrightarrow Y$
- $|X|=0 \Longleftrightarrow X=\varnothing$
- For $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, then $|X|=k$
- $|X| \leq|Y| \Longleftrightarrow \exists$ injective $f: X \longrightarrow Y$
- $|X|=n<P(X)=2^{n}$

Countable sets and cardinality

- X is countable if $\Longleftrightarrow \exists$ bijective $f: X \longrightarrow A \subset \mathbb{N}$ for finite A
- To each set X, assign the number card $X=|X|$
- For any two sets X and $Y,|X|=|Y| \Longleftrightarrow \exists$ bijective $f: X \longrightarrow Y$
- $|X|=0 \Longleftrightarrow X=\varnothing$
- For $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, then $|X|=k$
- $|X| \leq|Y| \Longleftrightarrow \exists$ injective $f: X \longrightarrow Y$
- $|X|=n<P(X)=2^{n}$
- Is it true that $A \subset B \Longrightarrow|A|<|B|$?

First Shock: whole is greater than its parts?

- X is countably infinite if $\Longleftrightarrow \exists$ bijective $f: X \longrightarrow \mathbb{N}$

First Shock: whole is greater than its parts?

- X is countably infinite if $\Longleftrightarrow \exists$ bijective $f: X \longrightarrow \mathbb{N}$
- Take $X=\{2,4, \ldots\}$ and \mathbb{N}

First Shock: whole is greater than its parts?

- X is countably infinite if $\Longleftrightarrow \exists$ bijective $f: X \longrightarrow \mathbb{N}$
- Take $X=\{2,4, \ldots\}$ and \mathbb{N}
- Then, $f: X \longrightarrow \mathbb{N}$ such that $x \longmapsto x / 2$

First Shock: whole is greater than its parts?

- X is countably infinite if $\Longleftrightarrow \exists$ bijective $f: X \longrightarrow \mathbb{N}$
- Take $X=\{2,4, \ldots\}$ and \mathbb{N}
- Then, $f: X \longrightarrow \mathbb{N}$ such that $x \longmapsto x / 2$
- Surjective: for any $n \in \mathbb{N}$, there exists $2 n \in X$

First Shock: whole is greater than its parts?

- X is countably infinite if $\Longleftrightarrow \exists$ bijective $f: X \longrightarrow \mathbb{N}$
- Take $X=\{2,4, \ldots\}$ and \mathbb{N}
- Then, $f: X \longrightarrow \mathbb{N}$ such that $x \longmapsto x / 2$
- Surjective: for any $n \in \mathbb{N}$, there exists $2 n \in X$
- Injective: $f(x)=f(y) \Longrightarrow x / 2=y / 2$

First Shock: whole is greater than its parts?

- X is countably infinite if $\Longleftrightarrow \exists$ bijective $f: X \longrightarrow \mathbb{N}$
- Take $X=\{2,4, \ldots\}$ and \mathbb{N}
- Then, $f: X \longrightarrow \mathbb{N}$ such that $x \longmapsto x / 2$
- Surjective: for any $n \in \mathbb{N}$, there exists $2 n \in X$
- Injective: $f(x)=f(y) \Longrightarrow x / 2=y / 2$
- $\Longrightarrow x=y$

Cardinal Arithmetic

- $|X|+|Y|=|X \cup Y|$ provided $X \cap Y=\varnothing$.

Cardinal Arithmetic

- $|X|+|Y|=|X \cup Y|$ provided $X \cap Y=\varnothing$. e.g. $\left|\left\{x_{1}, x_{2}\right\}\right|+\left|\left\{x_{3}, x_{4}, x_{5}\right\}\right|=5$ for $x_{i} \neq x_{j}$ for any $i \neq j$

Cardinal Arithmetic

- $|X|+|Y|=|X \cup Y|$ provided $X \cap Y=\varnothing$.
e.g. $\left|\left\{x_{1}, x_{2}\right\}\right|+\left|\left\{x_{3}, x_{4}, x_{5}\right\}\right|=5$ for $x_{i} \neq x_{j}$ for any $i \neq j$
- .. but that's not important: for any X, Y, construct $\tilde{X}=X \times\{1\}$ and $\tilde{Y}=Y \times\{2\}$

Cardinal Arithmetic

- $|X|+|Y|=|X \cup Y|$ provided $X \cap Y=\varnothing$.
e.g. $\left|\left\{x_{1}, x_{2}\right\}\right|+\left|\left\{x_{3}, x_{4}, x_{5}\right\}\right|=5$ for $x_{i} \neq x_{j}$ for any $i \neq j$
- .. but that's not important: for any X, Y, construct $\tilde{X}=X \times\{1\}$ and $\tilde{Y}=Y \times\{2\}$
- Note: $|\tilde{X}|=|\tilde{Y}|$

Cardinal Arithmetic

- $|X|+|Y|=|X \cup Y|$ provided $X \cap Y=\varnothing$.
e.g. $\left|\left\{x_{1}, x_{2}\right\}\right|+\left|\left\{x_{3}, x_{4}, x_{5}\right\}\right|=5$ for $x_{i} \neq x_{j}$ for any $i \neq j$
- .. but that's not important: for any X, Y, construct $\tilde{X}=X \times\{1\}$ and $\tilde{Y}=Y \times\{2\}$
- Note: $|\tilde{X}|=|\tilde{Y}|$
- Note 2: $|\mathbb{N}|=\aleph_{0}$

Cardinal Arithmetic

- $|X|+|Y|=|X \cup Y|$ provided $X \cap Y=\varnothing$.
e.g. $\left|\left\{x_{1}, x_{2}\right\}\right|+\left|\left\{x_{3}, x_{4}, x_{5}\right\}\right|=5$ for $x_{i} \neq x_{j}$ for any $i \neq j$
- .. but that's not important: for any X, Y, construct $\tilde{X}=X \times\{1\}$ and $\tilde{Y}=Y \times\{2\}$
- Note: $|\tilde{X}|=|\tilde{Y}|$
- Note 2: $|\mathbb{N}|=\aleph_{0}$
- $\aleph_{0}+\aleph_{0}=\aleph_{0}$

Cardinal Arithmetic

- $|X|+|Y|=|X \cup Y|$ provided $X \cap Y=\varnothing$.
e.g. $\left|\left\{x_{1}, x_{2}\right\}\right|+\left|\left\{x_{3}, x_{4}, x_{5}\right\}\right|=5$ for $x_{i} \neq x_{j}$ for any $i \neq j$
- .. but that's not important: for any X, Y, construct $\tilde{X}=X \times\{1\}$ and $\tilde{Y}=Y \times\{2\}$
- Note: $|\tilde{X}|=|\tilde{Y}|$
- Note 2: $|\mathbb{N}|=\aleph_{0}$
- $\aleph_{0}+\aleph_{0}=\aleph_{0}$
- Proof idea: set of even numbers $=$ set of odd numbers $=\aleph_{0}$

Cardinal Arithmetic

- $|X|+|Y|=|X \cup Y|$ provided $X \cap Y=\varnothing$.
e.g. $\left|\left\{x_{1}, x_{2}\right\}\right|+\left|\left\{x_{3}, x_{4}, x_{5}\right\}\right|=5$ for $x_{i} \neq x_{j}$ for any $i \neq j$
- .. but that's not important: for any X, Y, construct $\tilde{X}=X \times\{1\}$ and $\tilde{Y}=Y \times\{2\}$
- Note: $|\tilde{X}|=|\tilde{Y}|$
- Note 2: $|\mathbb{N}|=\aleph_{0}$
- $\aleph_{0}+\aleph_{0}=\aleph_{0}$
- Proof idea: set of even numbers $=$ set of odd numbers $=\aleph_{0}$
- Mild shock: Corollary: $|\mathbb{Z}|=|\mathbb{N}|$

Cardinal Arithmetic

- $|X|+|Y|=|X \cup Y|$ provided $X \cap Y=\varnothing$.
e.g. $\left|\left\{x_{1}, x_{2}\right\}\right|+\left|\left\{x_{3}, x_{4}, x_{5}\right\}\right|=5$ for $x_{i} \neq x_{j}$ for any $i \neq j$
- .. but that's not important: for any X, Y, construct $\tilde{X}=X \times\{1\}$ and $\tilde{Y}=Y \times\{2\}$
- Note: $|\tilde{X}|=|\tilde{Y}|$
- Note 2: $|\mathbb{N}|=\aleph_{0}$
- $\aleph_{0}+\aleph_{0}=\aleph_{0}$
- Proof idea: set of even numbers $=$ set of odd numbers $=\aleph_{0}$
- Mild shock: Corollary: $|\mathbb{Z}|=|\mathbb{N}|$
- Remark: $|\mathbb{P}|=|\mathbb{N}|$

Cardinal Arithmetic

- $|X|+|Y|=|X \cup Y|$ provided $X \cap Y=\varnothing$.
e.g. $\left|\left\{x_{1}, x_{2}\right\}\right|+\left|\left\{x_{3}, x_{4}, x_{5}\right\}\right|=5$ for $x_{i} \neq x_{j}$ for any $i \neq j$
- .. but that's not important: for any X, Y, construct $\tilde{X}=X \times\{1\}$ and $\tilde{Y}=Y \times\{2\}$
- Note: $|\tilde{X}|=|\tilde{Y}|$
- Note 2: $|\mathbb{N}|=\aleph_{0}$
- $\aleph_{0}+\aleph_{0}=\aleph_{0}$
- Proof idea: set of even numbers $=$ set of odd numbers $=\aleph_{0}$
- Mild shock: Corollary: $|\mathbb{Z}|=|\mathbb{N}|$
- Remark: $|\mathbb{P}|=|\mathbb{N}|$
- Mild shock: By induction: $n \aleph_{0}=\aleph_{0}$ for any n i.e.
$\left(\aleph_{0}+\aleph_{0}+\ldots=\aleph_{0}\right)$

Countable to continuum

- $|\mathbb{Q}|=|\mathbb{N}|$ since

$1 / 1$	$1 / 2$	$1 / 3$	\ldots
$2 / 1$	$2 / 2$	$2 / 3$	\ldots
$3 / 1$	$3 / 2$	$3 / 3$	\ldots
\vdots	\vdots	\vdots	\ddots

Countable to continuum

- $|\mathbb{Q}|=|\mathbb{N}|$ since

$1 / 1$	$1 / 2$	$1 / 3$	\ldots
$2 / 1$	$2 / 2$	$2 / 3$	\ldots
$3 / 1$	$3 / 2$	$3 / 3$	\ldots
\vdots	\vdots	\vdots	\ddots

- $|[0,1]|=|(0,1)|$

Countable to continuum

- $|\mathbb{Q}|=|\mathbb{N}|$ since

$$
\begin{array}{llll}
1 / 1 & 1 / 2 & 1 / 3 & \ldots \\
2 / 1 & 2 / 2 & 2 / 3 & \ldots \\
3 / 1 & 3 / 2 & 3 / 3 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}
$$

- $|[0,1]|=|(0,1)|$
- $f:[0,1] \longrightarrow(0,1)$

$$
f(x)=\left\{\begin{array}{cc}
x & \text { if } x \notin\{0,1,1 / 2,1 / 3,1 / 4 \ldots\} \\
\frac{1}{n+2} & \text { if } x=1 / n \\
1 / 2 & \text { if } x=0
\end{array}\right.
$$

Countable to continuum

- $|\mathbb{Q}|=|\mathbb{N}|$ since

$$
\begin{array}{llll}
1 / 1 & 1 / 2 & 1 / 3 & \ldots \\
2 / 1 & 2 / 2 & 2 / 3 & \ldots \\
3 / 1 & 3 / 2 & 3 / 3 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}
$$

- $|[0,1]|=|(0,1)|$
- $f:[0,1] \longrightarrow(0,1)$

$$
f(x)=\left\{\begin{array}{cc}
x & \text { if } x \notin\{0,1,1 / 2,1 / 3,1 / 4 \ldots\} \\
\frac{1}{n+2} & \text { if } x=1 / n \\
1 / 2 & \text { if } x=0
\end{array}\right.
$$

- $|(-1,1)|=|(0,1)|$ with $f:(-1,1) \longrightarrow(0,1)$ such that $x \longmapsto \frac{1}{2}(x+1)$

Countable to continuum

- $|(0,1)|=|\mathbb{R}|=\mathfrak{c}$ with $f:(0,1) \longrightarrow \mathbb{R}$ such that $\tan x \longmapsto \tan \pi x \longmapsto \tan \frac{\pi x-1}{2}$

Countable to continuum

- $|(0,1)|=|\mathbb{R}|=\mathfrak{c}$ with $f:(0,1) \longrightarrow \mathbb{R}$ such that $\tan x \longmapsto \tan \pi x \longmapsto \tan \frac{\pi x-1}{2}$
- $(0,1)$ cannot be counted

$$
\begin{aligned}
x_{1}= & 0 . a_{11} a_{12} a_{13} \ldots a_{1 k} \cdots \\
x_{2}= & 0 . a_{21} a_{22} a_{23} \ldots a_{2 k} \cdots \\
& \vdots \\
x_{k}= & 0 . a_{k 1} a_{k 2} a_{k 3} \ldots a_{k k} \cdots
\end{aligned}
$$

then, $y=0 . b_{1} b_{2} \ldots \in(0,1)$ with $b_{k} \neq a_{k k}$ (that is, $\aleph_{0}<\mathfrak{c}$. By CH, $2^{\aleph_{0}}=\mathfrak{c}$)

Countable to continuum

- $|(0,1)|=|\mathbb{R}|=\mathfrak{c}$ with $f:(0,1) \longrightarrow \mathbb{R}$ such that $\tan x \longmapsto \tan \pi x \longmapsto \tan \frac{\pi x-1}{2}$
- $(0,1)$ cannot be counted

$$
\begin{aligned}
x_{1}= & 0 . a_{11} a_{12} a_{13} \ldots a_{1 k} \ldots \\
x_{2}= & 0 . a_{21} a_{22} a_{23} \ldots a_{2 k} \ldots \\
& \vdots \\
x_{k}= & 0 . a_{k 1} a_{k 2} a_{k 3} \ldots a_{k k} \ldots
\end{aligned}
$$

then, $y=0 . b_{1} b_{2} \ldots \in(0,1)$ with $b_{k} \neq a_{k k}$ (that is, $\aleph_{0}<\mathfrak{c}$. By CH, $2^{\aleph_{0}}=\mathfrak{c}$)

- $\aleph_{0}+\mathfrak{c}=\mathfrak{c}$ since $|\mathbb{N} \cup(0,1)|=|\mathbb{N}|+|(0,1)|=\aleph_{0}+\mathfrak{c}$ but $(0,1) \subset \mathbb{N} \cup(0,1)$ and $\mathbb{N} \cup(0,1) \subset \mathbb{R}$ implies $\mathfrak{c} \leq \aleph_{0}+\mathfrak{c}$ and $\aleph_{0}+\mathfrak{c} \leq \mathfrak{c}$

Countable to continuum

- $|(0,1)|=|\mathbb{R}|=\mathfrak{c}$ with $f:(0,1) \longrightarrow \mathbb{R}$ such that $\tan x \longmapsto \tan \pi x \longmapsto \tan \frac{\pi x-1}{2}$
- $(0,1)$ cannot be counted

$$
\begin{aligned}
x_{1}= & 0 . a_{11} a_{12} a_{13} \ldots a_{1 k} \ldots \\
x_{2}= & 0 . a_{21} a_{22} a_{23} \ldots a_{2 k} \ldots \\
& \vdots \\
x_{k}= & 0 . a_{k 1} a_{k 2} a_{k 3} \ldots a_{k k} \ldots
\end{aligned}
$$

then, $y=0 . b_{1} b_{2} \ldots \in(0,1)$ with $b_{k} \neq a_{k k}$ (that is, $\aleph_{0}<\mathfrak{c}$. By CH, $2^{\aleph_{0}}=\mathfrak{c}$)

- $\aleph_{0}+\mathfrak{c}=\mathfrak{c}$ since $|\mathbb{N} \cup(0,1)|=|\mathbb{N}|+|(0,1)|=\aleph_{0}+\mathfrak{c}$ but $(0,1) \subset \mathbb{N} \cup(0,1)$ and $\mathbb{N} \cup(0,1) \subset \mathbb{R}$ implies $\mathfrak{c} \leq \aleph_{0}+\mathfrak{c}$ and $\aleph_{0}+\mathfrak{c} \leq \mathfrak{c}$
- $|X| \times|Y|=|X \times Y|$

Continuum

- $\aleph_{0} \times \aleph_{0}=\aleph_{0}$ since $(m, n) \longmapsto p_{1}^{m} p_{2}^{n}$

Continuum

- $\aleph_{0} \times \aleph_{0}=\aleph_{0}$ since $(m, n) \longmapsto p_{1}^{m} p_{2}^{n}$
- By induction: $\aleph_{0} \times \aleph_{0} \times \ldots=\aleph_{0}$

Continuum

- $\aleph_{0} \times \aleph_{0}=\aleph_{0}$ since $(m, n) \longmapsto p_{1}^{m} p_{2}^{n}$
- By induction: $\aleph_{0} \times \aleph_{0} \times \ldots=\aleph_{0}$
- $\mathfrak{c} \times \mathfrak{c}=\mathfrak{c}$ since $f:(0,1) \times(0,1) \longrightarrow(0,1)$ such that $\left(0 . x_{1} x_{2} \ldots, 0 . y_{1} y_{2} \ldots\right)=0 . x_{1} y_{1} x_{2} y_{2} \ldots$ is injective $(\mathfrak{c c} \leq \mathfrak{c})$. Clearly, $\mathfrak{c} \leq \mathfrak{c c}$

Continuum

- $\aleph_{0} \times \aleph_{0}=\aleph_{0}$ since $(m, n) \longmapsto p_{1}^{m} p_{2}^{n}$
- By induction: $\aleph_{0} \times \aleph_{0} \times \ldots=\aleph_{0}$
- $\mathfrak{c} \times \mathfrak{c}=\mathfrak{c}$ since $f:(0,1) \times(0,1) \longrightarrow(0,1)$ such that $\left(0 . x_{1} x_{2} \ldots, 0 . y_{1} y_{2} \ldots\right)=0 . x_{1} y_{1} x_{2} y_{2} \ldots$ is injective $(\mathfrak{c c} \leq \mathfrak{c})$. Clearly, $\mathfrak{c} \leq \mathfrak{c c}$
- Corollary: $|\mathbb{C}|=|\mathbb{R}|$

Continuum

- $\aleph_{0} \times \aleph_{0}=\aleph_{0}$ since $(m, n) \longmapsto p_{1}^{m} p_{2}^{n}$
- By induction: $\aleph_{0} \times \aleph_{0} \times \ldots=\aleph_{0}$
- $\mathfrak{c} \times \mathfrak{c}=\mathfrak{c}$ since $f:(0,1) \times(0,1) \longrightarrow(0,1)$ such that $\left(0 . x_{1} x_{2} \ldots, 0 . y_{1} y_{2} \ldots\right)=0 . x_{1} y_{1} x_{2} y_{2} \ldots$ is injective $(\mathfrak{c c} \leq \mathfrak{c})$. Clearly, $\mathfrak{c} \leq \mathfrak{c c}$
- Corollary: $|\mathbb{C}|=|\mathbb{R}|$
- By induction: $\left|\mathbb{R}^{n}\right|=\mathfrak{c}$

Continuum

- $\aleph_{0} \times \aleph_{0}=\aleph_{0}$ since $(m, n) \longmapsto p_{1}^{m} p_{2}^{n}$
- By induction: $\aleph_{0} \times \aleph_{0} \times \ldots=\aleph_{0}$
- $\mathfrak{c} \times \mathfrak{c}=\mathfrak{c}$ since $f:(0,1) \times(0,1) \longrightarrow(0,1)$ such that $\left(0 . x_{1} x_{2} \ldots, 0 . y_{1} y_{2} \ldots\right)=0 . x_{1} y_{1} x_{2} y_{2} \ldots$ is injective $(\mathfrak{c c} \leq \mathfrak{c})$. Clearly, $\mathfrak{c} \leq \mathfrak{c c}$
- Corollary: $|\mathbb{C}|=|\mathbb{R}|$
- By induction: $\left|\mathbb{R}^{n}\right|=\mathfrak{c}$
- $\aleph_{0} \times \mathfrak{c}=\mathfrak{c}$ i.e. cardinality of set of all real valued sequences is \mathfrak{c}

Continuum

- $\aleph_{0} \times \aleph_{0}=\aleph_{0}$ since $(m, n) \longmapsto p_{1}^{m} p_{2}^{n}$
- By induction: $\aleph_{0} \times \aleph_{0} \times \ldots=\aleph_{0}$
- $\mathfrak{c} \times \mathfrak{c}=\mathfrak{c}$ since $f:(0,1) \times(0,1) \longrightarrow(0,1)$ such that $\left(0 . x_{1} x_{2} \ldots, 0 . y_{1} y_{2} \ldots\right)=0 . x_{1} y_{1} x_{2} y_{2} \ldots$ is injective $(\mathfrak{c c} \leq \mathfrak{c})$. Clearly, $\mathfrak{c} \leq \mathfrak{c c}$
- Corollary: $|\mathbb{C}|=|\mathbb{R}|$
- By induction: $\left|\mathbb{R}^{n}\right|=\mathfrak{c}$
- $\aleph_{0} \times \mathfrak{c}=\mathfrak{c}$ i.e. cardinality of set of all real valued sequences is \mathfrak{c}
- Every real number has a binary representation. Hence identify each real x with a function $f: \mathbb{N} \longrightarrow\{0,1\}$

Continuum

- $\aleph_{0} \times \aleph_{0}=\aleph_{0}$ since $(m, n) \longmapsto p_{1}^{m} p_{2}^{n}$
- By induction: $\aleph_{0} \times \aleph_{0} \times \ldots=\aleph_{0}$
- $\mathfrak{c} \times \mathfrak{c}=\mathfrak{c}$ since $f:(0,1) \times(0,1) \longrightarrow(0,1)$ such that $\left(0 . x_{1} x_{2} \ldots, 0 . y_{1} y_{2} \ldots\right)=0 . x_{1} y_{1} x_{2} y_{2} \ldots$ is injective $(\mathfrak{c c} \leq \mathfrak{c})$. Clearly, $\mathfrak{c} \leq \mathfrak{c c}$
- Corollary: $|\mathbb{C}|=|\mathbb{R}|$
- By induction: $\left|\mathbb{R}^{n}\right|=\mathfrak{c}$
- $\aleph_{0} \times \mathfrak{c}=\mathfrak{c}$ i.e. cardinality of set of all real valued sequences is \mathfrak{c}
- Every real number has a binary representation. Hence identify each real x with a function $f: \mathbb{N} \longrightarrow\{0,1\}$
- Hence $\left\{x_{m}\right\} \subseteq \mathbb{R}$ becomes $\left\{f_{n}\right\}_{m}$ this sequence is a function $g: \mathbb{N} \times \mathbb{N} \longrightarrow\{0,1\}\left(f_{n}(m)=g(m, n)\right)$

Continuum

- $\aleph_{0} \times \aleph_{0}=\aleph_{0}$ since $(m, n) \longmapsto p_{1}^{m} p_{2}^{n}$
- By induction: $\aleph_{0} \times \aleph_{0} \times \ldots=\aleph_{0}$
- $\mathfrak{c} \times \mathfrak{c}=\mathfrak{c}$ since $f:(0,1) \times(0,1) \longrightarrow(0,1)$ such that $\left(0 . x_{1} x_{2} \ldots, 0 . y_{1} y_{2} \ldots\right)=0 . x_{1} y_{1} x_{2} y_{2} \ldots$ is injective $(\mathfrak{c c} \leq \mathfrak{c})$. Clearly, $\mathfrak{c} \leq \mathfrak{c c}$
- Corollary: $|\mathbb{C}|=|\mathbb{R}|$
- By induction: $\left|\mathbb{R}^{n}\right|=\mathfrak{c}$
- $\aleph_{0} \times \mathfrak{c}=\mathfrak{c}$ i.e. cardinality of set of all real valued sequences is \mathfrak{c}
- Every real number has a binary representation. Hence identify each real x with a function $f: \mathbb{N} \longrightarrow\{0,1\}$
- Hence $\left\{x_{m}\right\} \subseteq \mathbb{R}$ becomes $\left\{f_{n}\right\}_{m}$ this sequence is a function $g: \mathbb{N} \times \mathbb{N} \longrightarrow\{0,1\}\left(f_{n}(m)=g(m, n)\right)$
- That is, there is a bijection from sequence of real numbers to the set of g 's

Continuum

- $\aleph_{0} \times \aleph_{0}=\aleph_{0}$ since $(m, n) \longmapsto p_{1}^{m} p_{2}^{n}$
- By induction: $\aleph_{0} \times \aleph_{0} \times \ldots=\aleph_{0}$
- $\mathfrak{c} \times \mathfrak{c}=\mathfrak{c}$ since $f:(0,1) \times(0,1) \longrightarrow(0,1)$ such that $\left(0 . x_{1} x_{2} \ldots, 0 . y_{1} y_{2} \ldots\right)=0 . x_{1} y_{1} x_{2} y_{2} \ldots$ is injective $(\mathfrak{c c} \leq \mathfrak{c})$. Clearly, $\mathfrak{c} \leq \mathfrak{c c}$
- Corollary: $|\mathbb{C}|=|\mathbb{R}|$
- By induction: $\left|\mathbb{R}^{n}\right|=\mathfrak{c}$
- $\aleph_{0} \times \mathfrak{c}=\mathfrak{c}$ i.e. cardinality of set of all real valued sequences is \mathfrak{c}
- Every real number has a binary representation. Hence identify each real x with a function $f: \mathbb{N} \longrightarrow\{0,1\}$
- Hence $\left\{x_{m}\right\} \subseteq \mathbb{R}$ becomes $\left\{f_{n}\right\}_{m}$ this sequence is a function $g: \mathbb{N} \times \mathbb{N} \longrightarrow\{0,1\}\left(f_{n}(m)=g(m, n)\right)$
- That is, there is a bijection from sequence of real numbers to the set of g 's
- How many functions of type g are there? Basically count functions of type $h: \mathbb{N} \longrightarrow\{0,1\}$. Answer: $2^{\aleph_{0}}=\mathfrak{c}$

