1,2,...: Counting to infinity

Abdullah Naeem Malik

Qauid e Azam University

August 24th, 2015

• One sheep, two sheep, three sheep,...

- One sheep, two sheep, three sheep,...
- What if we're interested in knowing that two items have the same number? For example, nuts and bolts

- One sheep, two sheep, three sheep,...
- What if we're interested in knowing that two items have the same number? For example, nuts and bolts
- Simply pair each nut with a bolt and hope that they simultaneously run out!

• X is countable if $\iff \exists$ bijective $f: X \longrightarrow A \subset \mathbb{N}$ for finite A

X is countable if ⇔ ∃ bijective f : X → A ⊂ N for finite A
To each set X, assign the number cardX = |X|

- X is countable if $\iff \exists$ bijective $f: X \longrightarrow A \subset \mathbb{N}$ for finite A
- To each set X, assign the number cardX = |X|
- For any two sets X and Y, $|X| = |Y| \iff \exists$ bijective $f: X \longrightarrow Y$

- X is countable if $\iff \exists$ bijective $f: X \longrightarrow A \subset \mathbb{N}$ for finite A
- To each set X, assign the number cardX = |X|
- For any two sets X and Y, $|X| = |Y| \iff \exists$ bijective $f: X \longrightarrow Y$

•
$$|X| = 0 \iff X = \emptyset$$

- X is countable if $\iff \exists$ bijective $f: X \longrightarrow A \subset \mathbb{N}$ for finite A
- To each set X, assign the number cardX = |X|
- For any two sets X and Y, $|X| = |Y| \iff \exists$ bijective $f: X \longrightarrow Y$

•
$$|X| = 0 \iff X = \emptyset$$

• For $X = \{x_1, x_2, ..., x_k\}$, then |X| = k

- X is countable if $\iff \exists$ bijective $f: X \longrightarrow A \subset \mathbb{N}$ for finite A
- To each set X, assign the number cardX = |X|
- For any two sets X and Y, $|X| = |Y| \iff \exists$ bijective $f: X \longrightarrow Y$

•
$$|X| = 0 \iff X = \emptyset$$

• For $X = \{x_1, x_2, ..., x_k\}$, then $|X| = k$
• $|X| \le |Y| \iff \exists$ injective $f : X \longrightarrow Y$

- X is countable if ⇔ ∃ bijective f : X → A ⊂ N for finite A
 To each set X, assign the number cardX = |X|
 For any two sets X and Y, |X| = |Y| ⇔ ∃ bijective f : X → Y
 |X| = 0 ⇔ X = Ø
- For $X = \{x_1, x_2, ..., x_k\}$, then |X| = k
- $|X| \leq |Y| \iff \exists \text{ injective } f: X \longrightarrow Y$
- $|X| = n < P(X) = 2^n$

X is countable if ⇔ ∃ bijective f : X → A ⊂ N for finite A
To each set X, assign the number cardX = |X|
For any two sets X and Y, |X| = |Y| ⇔ ∃ bijective f : X → Y
|X| = 0 ⇔ X = Ø
For X = {x₁, x₂, ..., x_k}, then |X| = k
|X| < |Y| ⇔ ∃ injective f : X → Y

•
$$|X| = n < P(X) = 2^n$$

• Is it true that $A \subset B \Longrightarrow |A| < |B|$?

• X is countably infinite if $\iff \exists$ bijective $f: X \longrightarrow \mathbb{N}$

- X is countably infinite if $\iff \exists$ bijective $f: X \longrightarrow \mathbb{N}$
- Take $X = \{2, 4, ...\}$ and $\mathbb N$

- X is countably infinite if $\iff \exists$ bijective $f: X \longrightarrow \mathbb{N}$
- Take $X = \{2, 4, ...\}$ and $\mathbb N$
- Then, $f: X \longrightarrow \mathbb{N}$ such that $x \longmapsto x/2$

- X is countably infinite if $\iff \exists$ bijective $f: X \longrightarrow \mathbb{N}$
- Take $X = \{2, 4, ...\}$ and $\mathbb N$
- Then, $f: X \longrightarrow \mathbb{N}$ such that $x \longmapsto x/2$
- Surjective: for any $n \in \mathbb{N}$, there exists $2n \in X$

- X is countably infinite if $\iff \exists$ bijective $f: X \longrightarrow \mathbb{N}$
- Take $X = \{2, 4, ...\}$ and $\mathbb N$
- Then, $f: X \longrightarrow \mathbb{N}$ such that $x \longmapsto x/2$
- Surjective: for any $n \in \mathbb{N}$, there exists $2n \in X$
- Injective: $f(x) = f(y) \Longrightarrow x/2 = y/2$

- X is countably infinite if $\iff \exists$ bijective $f: X \longrightarrow \mathbb{N}$
- Take $X = \{2, 4, ...\}$ and $\mathbb N$
- Then, $f: X \longrightarrow \mathbb{N}$ such that $x \longmapsto x/2$
- Surjective: for any $n \in \mathbb{N}$, there exists $2n \in X$
- Injective: $f(x) = f(y) \Longrightarrow x/2 = y/2$

• \implies x = y

•
$$|X| + |Y| = |X \cup Y|$$
 provided $X \cap Y = \emptyset$.

Abdullah Naeem Malik (QAU)

Image: A image: A

æ

• $|X| + |Y| = |X \cup Y|$ provided $X \cap Y = \emptyset$. e.g. $|\{x_1, x_2\}| + |\{x_3, x_4, x_5\}| = 5$ for $x_i \neq x_j$ for any $i \neq j$

- ∢ /⊐) - ∢

•
$$|X| + |Y| = |X \cup Y|$$
 provided $X \cap Y = \emptyset$.
e.g. $|\{x_1, x_2\}| + |\{x_3, x_4, x_5\}| = 5$ for $x_i \neq x_j$ for any $i \neq j$

• .. but that's not important: for any X, Y, construct $\tilde{X} = X \times \{1\}$ and $\tilde{Y} = Y \times \{2\}$

•
$$|X| + |Y| = |X \cup Y|$$
 provided $X \cap Y = \emptyset$.
e.g. $|\{x_1, x_2\}| + |\{x_3, x_4, x_5\}| = 5$ for $x_i \neq x_j$ for any $i \neq j$
• .. but that's not important: for any X, Y, construct $\tilde{X} = X \times \{1\}$
and $\tilde{Y} = Y \times \{2\}$
• Note: $|\tilde{X}| = |\tilde{Y}|$

Image: A image: A

æ

•
$$|X| + |Y| = |X \cup Y|$$
 provided $X \cap Y = \emptyset$.
e.g. $|\{x_1, x_2\}| + |\{x_3, x_4, x_5\}| = 5$ for $x_i \neq x_j$ for any $i \neq j$
• .. but that's not important: for any X, Y, construct $\tilde{X} = X \times \{1\}$
and $\tilde{Y} = Y \times \{2\}$
• Note: $|\tilde{X}| = |\tilde{Y}|$
• Note 2: $|\mathbb{IN}| = \aleph_0$

э

æ

э

-

3

Image: A image: A

-

1

-

Image: A math a math

э

• Remark: $|\mathbb{P}| = |\mathbb{N}|$

∃ →

• • • • • • • • • • • •

æ

•
$$|X| + |Y| = |X \cup Y|$$
 provided $X \cap Y = \emptyset$.
e.g. $|\{x_1, x_2\}| + |\{x_3, x_4, x_5\}| = 5$ for $x_i \neq x_j$ for any $i \neq j$
• .. but that's not important: for any X, Y , construct $\tilde{X} = X \times \{1\}$
and $\tilde{Y} = Y \times \{2\}$
• Note: $|\tilde{X}| = |\tilde{Y}|$
• Note 2: $|\mathbb{N}| = \aleph_0$
• $\aleph_0 + \aleph_0 = \aleph_0$
• Proof idea: set of even numbers = set of odd numbers = \aleph_0
• Mild shock: Corollary: $|\mathbb{Z}| = |\mathbb{N}|$
• Remark: $|\mathbb{P}| = |\mathbb{N}|$
• Mild shock: By induction: $n\aleph_0 = \aleph_0$ for any n i.e.
 $(\aleph_0 + \aleph_0 + ... = \aleph_0)$
 $p_1 \quad 2p_1 \quad 3p_1 \quad ...$
 $p_2 \quad 2p_2 \quad 3p_2 \quad ...$
 $p_3 \quad 2p_3 \quad 3p_3 \quad ...$

.

:

:

э

• $|\mathbb{Q}| = |\mathbb{N}|$ since

1/1	1/2	1/3	
2/1	2/2	2/3	
3/1	3/2	3/3	
÷	÷	÷	·

Image: Image:

3

 $ullet ~~|\mathbb{Q}| = |\mathbb{N}|$ since

• |[0,1]| = |(0,1)|

A 🖓

 $\bullet \ |\mathbb{Q}| = |\mathbb{N}| \text{ since }$

|[0,1]| = |(0,1)|
f: [0,1] → (0,1)

$$f(x) = \begin{cases} x & \text{if } x \notin \{0, 1, 1/2, 1/3, 1/4...\} \\ \frac{1}{n+2} & \text{if } x = 1/n \\ 1/2 & \text{if } x = 0 \end{cases}$$

< 🗗 🕨 🔸

 $\bullet \ |\mathbb{Q}| = |\mathbb{N}| \text{ since }$

1/1	1/2	1/3	
2/1	2/2	2/3	
3/1	3/2	3/3	
:	÷	÷	·

•
$$|[0, 1]| = |(0, 1)|$$

• $f : [0, 1] \longrightarrow (0, 1)$

$$f(x) = \begin{cases} x & \text{if } x \notin \{0, 1, 1/2, 1/3, 1/4...\} \\ \frac{1}{n+2} & \text{if } x = 1/n \\ 1/2 & \text{if } x = 0 \end{cases}$$

• |(-1,1)| = |(0,1)| with $f: (-1,1) \longrightarrow (0,1)$ such that $x \longmapsto \frac{1}{2}(x+1)$

Image: A matrix and a matri

•
$$|(0,1)| = |\mathbb{R}| = \mathfrak{c}$$
 with $f: (0,1) \longrightarrow \mathbb{R}$ such that $\tan x \longmapsto \tan \pi x \longmapsto \tan \frac{\pi x - 1}{2}$

э

- $|(0,1)| = |\mathbb{R}| = \mathfrak{c}$ with $f: (0,1) \longrightarrow \mathbb{R}$ such that $\tan x \longmapsto \tan \pi x \longmapsto \tan \frac{\pi x 1}{2}$
- (0, 1) cannot be counted

$$\begin{array}{rcl} x_1 & = & 0.a_{11}a_{12}a_{13}...a_{1k}...\\ x_2 & = & 0.a_{21}a_{22}a_{23}...a_{2k}...\\ & & \vdots\\ x_k & = & 0.a_{k1}a_{k2}a_{k3}...a_{kk}...\\ & & \vdots \end{array}$$

then, $y = 0.b_1b_2... \in (0,1)$ with $b_k \neq a_{kk}$ (that is, $\aleph_0 < \mathfrak{c}$. By CH, $2^{\aleph_0} = \mathfrak{c}$)

- $|(0,1)| = |\mathbb{R}| = \mathfrak{c}$ with $f: (0,1) \longrightarrow \mathbb{R}$ such that $\tan x \longmapsto \tan \pi x \longmapsto \tan \frac{\pi x 1}{2}$
- (0, 1) cannot be counted

$$\begin{array}{rcl} x_1 & = & 0.a_{11}a_{12}a_{13}...a_{1k}...\\ x_2 & = & 0.a_{21}a_{22}a_{23}...a_{2k}...\\ & \vdots\\ x_k & = & 0.a_{k1}a_{k2}a_{k3}...a_{kk}...\\ & & \vdots \end{array}$$

then, $y = 0.b_1b_2... \in (0,1)$ with $b_k \neq a_{kk}$ (that is, $\aleph_0 < \mathfrak{c}$. By CH, $2^{\aleph_0} = \mathfrak{c}$)

• $\aleph_0 + \mathfrak{c} = \mathfrak{c}$ since $|\mathbb{N} \cup (0,1)| = |\mathbb{N}| + |(0,1)| = \aleph_0 + \mathfrak{c}$ but $(0,1) \subset \mathbb{N} \cup (0,1)$ and $\mathbb{N} \cup (0,1) \subset \mathbb{R}$ implies $\mathfrak{c} \leq \aleph_0 + \mathfrak{c}$ and $\aleph_0 + \mathfrak{c} \leq \mathfrak{c}$

- $|(0,1)| = |\mathbb{R}| = \mathfrak{c}$ with $f: (0,1) \longrightarrow \mathbb{R}$ such that $\tan x \longmapsto \tan \pi x \longmapsto \tan \frac{\pi x 1}{2}$
- (0, 1) cannot be counted

$$\begin{array}{rcl} x_1 & = & 0.a_{11}a_{12}a_{13}...a_{1k}...\\ x_2 & = & 0.a_{21}a_{22}a_{23}...a_{2k}...\\ & & \vdots\\ x_k & = & 0.a_{k1}a_{k2}a_{k3}...a_{kk}...\\ & & \vdots \end{array}$$

then, $y = 0.b_1b_2... \in (0,1)$ with $b_k \neq a_{kk}$ (that is, $\aleph_0 < \mathfrak{c}$. By CH, $2^{\aleph_0} = \mathfrak{c}$)

• $\aleph_0 + \mathfrak{c} = \mathfrak{c}$ since $|\mathbb{N} \cup (0,1)| = |\mathbb{N}| + |(0,1)| = \aleph_0 + \mathfrak{c}$ but $(0,1) \subset \mathbb{N} \cup (0,1)$ and $\mathbb{N} \cup (0,1) \subset \mathbb{R}$ implies $\mathfrak{c} \leq \aleph_0 + \mathfrak{c}$ and $\aleph_0 + \mathfrak{c} \leq \mathfrak{c}$

•
$$|X| \times |Y| = |X \times Y|$$

•
$$\aleph_0 \times \aleph_0 = \aleph_0$$
 since $(m, n) \longmapsto p_1^m p_2^n$

3

・ロト ・聞 ト ・ ヨト ・ ヨト

- $\aleph_0 \times \aleph_0 = \aleph_0$ since $(m, n) \longmapsto p_1^m p_2^n$
- By induction: $\aleph_0 \times \aleph_0 \times ... = \aleph_0$

Image: A matrix and a matrix

3

• $\aleph_0 \times \aleph_0 = \aleph_0$ since $(m, n) \longmapsto p_1^m p_2^n$ • By induction: $\aleph_0 \times \aleph_0 \times ... = \aleph_0$ • $\mathfrak{c} \times \mathfrak{c} = \mathfrak{c}$ since $f : (0, 1) \times (0, 1) \longrightarrow (0, 1)$ such that $(0.x_1x_2..., 0.y_1y_2...) = 0.x_1y_1x_2y_2...$ is injective ($\mathfrak{c}\mathfrak{c} \leq \mathfrak{c}$). Clearly, $\mathfrak{c} \leq \mathfrak{c}\mathfrak{c}$

- $\aleph_0 \times \aleph_0 = \aleph_0$ since $(m, n) \longmapsto p_1^m p_2^n$ • By induction: $\aleph_0 \times \aleph_0 \times ... = \aleph_0$ • $\mathfrak{c} \times \mathfrak{c} = \mathfrak{c}$ since $f : (0, 1) \times (0, 1) \longrightarrow (0, 1)$ such that $(0.x_1x_2..., 0.y_1y_2...) = 0.x_1y_1x_2y_2...$ is injective ($\mathfrak{c}\mathfrak{c} \leq \mathfrak{c}$). Clearly, $\mathfrak{c} \leq \mathfrak{c}\mathfrak{c}$
- Corollary: $|\mathbb{C}| = |\mathbb{R}|$

- $\aleph_0 \times \aleph_0 = \aleph_0$ since $(m, n) \longmapsto p_1^m p_2^n$ • By induction: $\aleph_0 \times \aleph_0 \times ... = \aleph_0$ • $\mathfrak{c} \times \mathfrak{c} = \mathfrak{c}$ since $f : (0, 1) \times (0, 1) \longrightarrow (0, 1)$ such that $(0.x_1x_2..., 0.y_1y_2...) = 0.x_1y_1x_2y_2...$ is injective ($\mathfrak{c}\mathfrak{c} \leq \mathfrak{c}$). Clearly, $\mathfrak{c} \leq \mathfrak{c}\mathfrak{c}$
- Corollary: $|\mathbb{C}| = |\mathbb{R}|$
- By induction: $|\mathbb{R}^n| = \mathfrak{c}$

- $\aleph_0 \times \aleph_0 = \aleph_0$ since $(m, n) \longmapsto p_1^m p_2^n$ • By induction: $\aleph_0 \times \aleph_0 \times ... = \aleph_0$ • $\mathfrak{c} \times \mathfrak{c} = \mathfrak{c}$ since $f : (0, 1) \times (0, 1) \longrightarrow (0, 1)$ such that $(0.x_1x_2..., 0.y_1y_2...) = 0.x_1y_1x_2y_2...$ is injective $(\mathfrak{c}\mathfrak{c} \leq \mathfrak{c})$. Clearly, $\mathfrak{c} \leq \mathfrak{c}\mathfrak{c}$
- Corollary: $|\mathbb{C}| = |\mathbb{R}|$
- By induction: $|\mathbb{R}^n| = \mathfrak{c}$
- $\aleph_0 imes \mathfrak{c} = \mathfrak{c}$ i.e. cardinality of set of all real valued sequences is \mathfrak{c}

- $\aleph_0 \times \aleph_0 = \aleph_0$ since $(m, n) \longmapsto p_1^m p_2^n$
- By induction: $\aleph_0 \times \aleph_0 \times ... = \aleph_0$
- $\mathfrak{c} \times \mathfrak{c} = \mathfrak{c}$ since $f : (0, 1) \times (0, 1) \longrightarrow (0, 1)$ such that $(0.x_1x_2..., 0.y_1y_2...) = 0.x_1y_1x_2y_2...$ is injective $(\mathfrak{c}\mathfrak{c} \leq \mathfrak{c})$. Clearly, $\mathfrak{c} \leq \mathfrak{c}\mathfrak{c}$
- Corollary: $|\mathbb{C}| = |\mathbb{R}|$
- By induction: $|\mathbb{R}^n| = \mathfrak{c}$
- $\aleph_0 imes \mathfrak{c} = \mathfrak{c}$ i.e. cardinality of set of all real valued sequences is \mathfrak{c}
- Every real number has a binary representation. Hence identify each real x with a function $f : \mathbb{N} \longrightarrow \{0, 1\}$

- $\aleph_0 \times \aleph_0 = \aleph_0$ since $(m, n) \longmapsto p_1^m p_2^n$
- By induction: $\aleph_0 \times \aleph_0 \times ... = \aleph_0$
- $\mathfrak{c} \times \mathfrak{c} = \mathfrak{c}$ since $f : (0, 1) \times (0, 1) \longrightarrow (0, 1)$ such that $(0.x_1x_2..., 0.y_1y_2...) = 0.x_1y_1x_2y_2...$ is injective $(\mathfrak{c}\mathfrak{c} \leq \mathfrak{c})$. Clearly, $\mathfrak{c} \leq \mathfrak{c}\mathfrak{c}$
- Corollary: $|\mathbb{C}| = |\mathbb{R}|$
- By induction: $|\mathbb{R}^n| = \mathfrak{c}$
- $\aleph_0 imes \mathfrak{c} = \mathfrak{c}$ i.e. cardinality of set of all real valued sequences is \mathfrak{c}
- Every real number has a binary representation. Hence identify each real x with a function $f : \mathbb{N} \longrightarrow \{0, 1\}$
- Hence $\{x_m\} \subseteq \mathbb{R}$ becomes $\{f_n\}_m$ this sequence is a function $g: \mathbb{N} \times \mathbb{N} \longrightarrow \{0, 1\} (f_n(m) = g(m, n))$

- $\aleph_0 \times \aleph_0 = \aleph_0$ since $(m, n) \longmapsto p_1^m p_2^n$
- By induction: $\aleph_0 \times \aleph_0 \times ... = \aleph_0$
- $\mathfrak{c} \times \mathfrak{c} = \mathfrak{c}$ since $f : (0, 1) \times (0, 1) \longrightarrow (0, 1)$ such that $(0.x_1x_2..., 0.y_1y_2...) = 0.x_1y_1x_2y_2...$ is injective $(\mathfrak{c}\mathfrak{c} \leq \mathfrak{c})$. Clearly, $\mathfrak{c} \leq \mathfrak{c}\mathfrak{c}$
- Corollary: $|\mathbb{C}| = |\mathbb{R}|$
- By induction: $|\mathbb{R}^n| = \mathfrak{c}$
- $\aleph_0 imes \mathfrak{c} = \mathfrak{c}$ i.e. cardinality of set of all real valued sequences is \mathfrak{c}
- Every real number has a binary representation. Hence identify each real x with a function $f : \mathbb{N} \longrightarrow \{0, 1\}$
- Hence $\{x_m\} \subseteq \mathbb{R}$ becomes $\{f_n\}_m$ this sequence is a function $g: \mathbb{N} \times \mathbb{N} \longrightarrow \{0, 1\} (f_n(m) = g(m, n))$
- That is, there is a bijection from sequence of real numbers to the set of g's

- $\aleph_0 \times \aleph_0 = \aleph_0$ since $(m, n) \longmapsto p_1^m p_2^n$
- By induction: $\aleph_0 \times \aleph_0 \times ... = \aleph_0$
- $\mathfrak{c} \times \mathfrak{c} = \mathfrak{c}$ since $f : (0, 1) \times (0, 1) \longrightarrow (0, 1)$ such that $(0.x_1x_2..., 0.y_1y_2...) = 0.x_1y_1x_2y_2...$ is injective ($\mathfrak{c}\mathfrak{c} \leq \mathfrak{c}$). Clearly, $\mathfrak{c} \leq \mathfrak{c}\mathfrak{c}$
- Corollary: $|\mathbb{C}| = |\mathbb{R}|$
- By induction: $|\mathbb{R}^n| = \mathfrak{c}$
- $\aleph_0 imes \mathfrak{c} = \mathfrak{c}$ i.e. cardinality of set of all real valued sequences is \mathfrak{c}
- Every real number has a binary representation. Hence identify each real x with a function $f : \mathbb{N} \longrightarrow \{0, 1\}$
- Hence $\{x_m\} \subseteq \mathbb{R}$ becomes $\{f_n\}_m$ this sequence is a function $g: \mathbb{N} \times \mathbb{N} \longrightarrow \{0, 1\} (f_n(m) = g(m, n))$
- That is, there is a bijection from sequence of real numbers to the set of g's
- How many functions of type g are there? Basically count functions of type h: N → {0, 1}. Answer: 2^{ℵ0} = c