Variational Bicomplex and Takens' Theorem

Advanced Topics Exam

Abdullah Naeem Malik

Department of Mathematics
College of Arts and Sciences
Florida State University

April XXII, 2021

Outline

- Introduction
- Mathematical background
- Mathematical apparatus
- Theorem
- Application
- Proof
- Future Work
- References

Introduction

$$
\begin{gathered}
x: \mathbb{R} \longrightarrow \mathbb{E}^{n} \\
\hline L=\frac{m}{2}|\dot{x}|^{2} d t=\frac{m}{2}\langle\dot{x}, \dot{x}\rangle d t \text { and } S=\int L \\
\delta L=m\langle\dot{x}, \delta \dot{x}\rangle d t=-m\langle\delta x, \ddot{x}\rangle d t+d\{m\langle\dot{x}, \delta x\rangle\} \\
\hline
\end{gathered}
$$

Introduction

$$
x \text { is a section of } \mathbb{E}^{n} \longrightarrow \mathbb{R}
$$

$L \in \Omega^{n}(M)$ is a volume form, depending only on first derivative of x What of the Euler-Lagrange Equation?

Jet Bundles

- Let $E \longrightarrow M$ be a submersion and $s_{1}, s_{2} \in \Gamma_{\text {loc }}(M, E)$ at $x \in M$. Define $s_{1} \sim_{k} s_{1} \Longleftrightarrow$ partial derivatives agree upto k. Let $j^{k}(s)(x)$ be the resulting equivalence class.
- The jet bundle $\pi^{k}: J^{k} \longrightarrow M$ is fibered by $\left(\pi^{k}\right)^{-1}(x)=j^{k}(s)(x)$

Jet Bundles

- Let $E \longrightarrow M$ be a submersion and $s_{1}, s_{2} \in \Gamma_{\text {loc }}(M, E)$ at $x \in M$. Define $s_{1} \sim_{k} s_{1} \Longleftrightarrow$ partial derivatives agree upto k. Let $j^{k}(s)(x)$ be the resulting equivalence class.
- The jet bundle $\pi^{k}: J^{k} \longrightarrow M$ is fibered by $\left(\pi^{k}\right)^{-1}(x)=j^{k}(s)(x)$

For $k \leq \ell$, define $\pi_{\ell}^{k}: J^{\ell}(E) \longrightarrow J^{k}(E)$ as $\pi_{\ell}^{k}\left(j^{\ell}(s)(x)\right)=j^{k}(s)(x)$

$$
J^{\infty}(E)=\lim _{\longleftarrow} J^{k}(E)=\lim _{\leftrightarrows}\left(\ldots \longrightarrow J^{2}(E) \longrightarrow J^{1}(E) \longrightarrow J^{0}(E)=E\right)
$$

Variational Bicomplex

- $\Omega^{k}\left(J^{\infty}(E)\right)=\bigoplus_{p+q=k} \Omega^{p, q}\left(J^{\infty}(E)\right)$ where splitting is induced by contact ideal generated by $\theta_{l}^{\alpha}=d u_{l}^{\alpha}-u_{I \cup\{i\}}^{\alpha} d x^{i}$ where $\left(x^{i}, u^{\alpha}, u_{l}^{\alpha}\right)$ are coordinates on $J^{\infty}(E)$
- Let $\mathcal{F}=\Gamma(M, E)$ be sections of submersion $E \longrightarrow M^{n}$
- ev: $\mathcal{F} \times M \xrightarrow{\left(j^{\infty}, i d_{M}\right)} \Gamma\left(J^{\infty}(E), M\right) \times M \xrightarrow{e v} J^{\infty}(E)$

$$
\Omega_{\mathrm{loc}}^{p, q}(\mathcal{F} \times M):=\mathbf{e v}^{*}\left(\Omega^{p, q}\left(J^{\infty}(E)\right)\right)
$$

Outline

- Introduction
- Mathematical background
- Mathematical apparatus
- Theorem
- Application
- Proof
- Future Work
- References

Formally...

- A field $\phi \in \mathcal{F}=\Gamma(M, E)$. Typically, $E \longrightarrow M$ is a submersion.
- $L \in \Omega_{\text {loc }}^{0,|0|}(\mathcal{F} \times M)$ where, for some k, L depends only on k-jet of $\phi \in \mathcal{F}$ and $\xi_{1}, \xi_{2}, \ldots, \xi_{p} \in T_{\phi} \mathcal{F}$
- $E L E:=\delta L \bmod \operatorname{imd}=0$ and $S: \Gamma(M, E) \longrightarrow \mathbb{R}$
- Phase space $\mathcal{M}=\{\phi \in \Gamma(M, E): E L E(\phi)=0\}$
- Conserved current $\eta \in \Omega_{\text {loc }}^{0,|-1|}(\mathcal{F} \times M)$ such that $d \eta=0 \bmod E L E$
- $\gamma \in \Omega_{\text {loc }}^{1,|-1|}$ is variational 1-form (Cartan form) such that $\delta \gamma$ is a local symplectic form

$$
\left.\begin{array}{ccccccc}
\Omega^{0,|0|}(\mathcal{F} \times M) & \xrightarrow{\delta} & \Omega^{1,|0|}(\mathcal{F} \times M) & \xrightarrow{\delta} \times & \begin{array}{l}
\Omega^{2,|0|}(\mathcal{F} \times M) \\
\uparrow d
\end{array} & & \uparrow d
\end{array}\right) \xrightarrow{\delta} \quad \ldots
$$

Takens' Theorem

Theorem (Takens)
For $p>0$, the complex $\left(\Omega_{\text {loc }}^{p,|\bullet|}(\mathcal{F} \times M), d\right)$ of local (twisted) forms is exact, except in the top degree $|\bullet|=0$.

Takens' Theorem

Theorem (Takens)

For $p>0$, the complex $\left(\Omega_{\text {loc }}^{p,|\bullet|}(\mathcal{F} \times M), d\right)$ of local (twisted) forms is exact, except in the top degree $|\bullet|=0$.

For $p=1$, consider $\delta L=D \mathcal{L}-d \gamma$ with $\gamma \in \Omega_{\text {loc }}^{1,|-1|}$ and $L \in \Omega_{\text {loc }}^{0,|0|}$.

Here, $\mathcal{L}=L+\gamma$ is the total Lagrangian, $\delta L=$ non-exact source - exact form

Toy model

Let $E \longrightarrow M$ be an (oriented!) line bundle and

$$
L=a \wedge|d a|=a \wedge d a
$$

be the Lagrangian density with $a \in \Omega^{|-(n-1)|}(M)$

$$
\delta L=\delta a \wedge d a+a \wedge \delta d a=\delta a \wedge d a-a \wedge d \delta a .
$$

Let $\gamma=a \wedge \delta a$.

$$
d \gamma=d a \wedge \delta a-a \wedge d \delta a
$$

and

$$
\begin{aligned}
\delta L & =\delta a \wedge d a-a \wedge d \delta a \pm(d a \wedge \delta a) \\
& =\delta a \wedge d a+d \gamma-d a \wedge \delta a=\underbrace{2 \delta a \wedge d a}_{D \mathcal{L}}+d \gamma
\end{aligned}
$$

The symplectic form is $\delta \gamma=\delta a \wedge \delta a$

Outline

- Introduction
- Mathematical background
- Mathematical apparatus
- Theorem
- Application
- Proof
- Future Work
- References

Proof Sketch

Strategy

(1) Represent different variations of sections as vector bundles
(2) Go local \& grade the differentials from multi-indices to single index
(0) Reduce the problem to dimension 1
(0) Apply a partition of unity argument

Proof Sketch

Strategy

(1) Represent different variations of sections as vector bundles
(2) Go local \& grade the differentials from multi-indices to single index
(3) Reduce the problem to dimension 1
(- Apply a partition of unity argument

Let $E \longrightarrow M$ be a submersion, $V_{i} \longrightarrow E$ be vector bundles for $i=1, \ldots, p$, $V=\times_{E} V_{i}$ where, $\mathcal{V}_{\phi}=\Gamma\left(M, \phi^{*} V\right)$. Need to show that the subcomplex $\left(\Omega_{l o c, m u l t}^{0, \bullet}\left(\mathcal{V}_{\phi} \times M\right), d\right)$ is exact except in the top degree $\bullet=0$.

The complex consists of forms $\alpha\left(\phi, \xi_{1}, \ldots, \xi_{p}\right)$ which depend on k-jet of ϕ and on sections ξ_{i} of $\phi^{*} V_{i}$. Moreover, α is \mathbb{R}-multilinear in ξ_{i}

Proof Sketch (Cont.)

Lemma 1

Locally, the chain complex is

$$
\begin{aligned}
& \bigotimes_{i=1}^{p} \bigotimes_{\left|n_{i}\right| \leq k} \pi^{(k)^{*}} \operatorname{Sym}^{\left|n_{i}\right|}(T M) \otimes \pi^{(k)^{*}}\left(\Omega^{q}(M)\right) \\
& \longrightarrow \bigotimes_{i=1}^{p} \bigotimes_{\left|n_{i}\right| \leq k+1} \pi^{(k+1)^{*}} \operatorname{Sym}^{\left|n_{i}\right|}(T M) \otimes \pi^{(k+1)^{*}}\left(\Omega^{q+1}(M)\right)
\end{aligned}
$$

with differential $s \otimes \zeta \mapsto\left(\sum_{\ell}\left(\sum_{i=1}^{p} 1 \otimes \ldots \otimes\left(e_{\ell}\right.\right.\right.$ at the ith place $\left.\left.) \otimes \ldots \otimes 1\right) . s\right) \otimes e^{\ell} \wedge \zeta$

Proof

$$
\begin{gathered}
\alpha\left(\phi, \xi_{1}, \ldots, \xi_{p}\right)=\sum \alpha_{n_{1}, \ldots, n_{p}}(\phi) \partial^{n_{1}} \xi_{1} \ldots \partial^{n_{p}} \xi_{p} \\
N=\sum_{i=1}^{p}\left|n_{i}\right| \text { and } G r^{F}\left(\Omega_{l o c, \text { mult }}^{0, q}\right)=\bigoplus_{N=0} F_{N+1} / F_{N}:=\bigoplus_{N=0} G r_{N}^{q} \\
\text { where } F_{0} \subseteq F_{1} \subseteq \ldots \subseteq F_{N} \subseteq F_{N+1} \subseteq \ldots
\end{gathered}
$$

Proof Sketch (Cont.)

Next step:
degree q
$\bigotimes_{\bigotimes}^{p} S_{y m}^{*}\left(T_{m_{0}} M\right) \otimes \Lambda^{q}\left(T_{m_{0}}^{\vee} M\right) \cong \operatorname{Sym}^{*}(S) \otimes \overbrace{\operatorname{Sym}^{*}\left(T_{m_{0}} M\right) \otimes \Lambda^{q}\left(T_{m_{0}}^{\vee} M\right)}$ 1

$$
\text { with } d(s \otimes \zeta)=\sum_{\ell}\left(\left(e_{\ell} \cdot s\right) \otimes\left(e^{\ell} \wedge \zeta\right)\right)
$$

Proof Sketch (Cont.)

Next step:
degree q
$\bigotimes_{\bigotimes}^{p} \operatorname{Sym}^{*}\left(T_{m_{0}} M\right) \otimes \Lambda^{q}\left(T_{m_{0}}^{\vee} M\right) \cong \operatorname{Sym}^{*}(S) \otimes \overbrace{\operatorname{Sym}^{*}\left(T_{m_{0}} M\right) \otimes \Lambda^{q}\left(T_{m_{0}}^{\vee} M\right)}$ 1

$$
\text { with } d(s \otimes \zeta)=\sum_{\ell}\left(\left(e_{\ell} \cdot s\right) \otimes\left(e^{\ell} \wedge \zeta\right)\right)
$$

Lemma 2

For $T_{m_{0}} M=A \oplus B$,
$\operatorname{Sym}^{*}(A \oplus B) \otimes \Lambda^{q}\left(A^{\vee} \oplus B^{\vee}\right) \cong\left(\operatorname{Sym}^{*}(A) \otimes \Lambda^{\bullet}\left(A^{\vee}\right)\right) \otimes\left(\operatorname{Sym}^{*}(B) \otimes \Lambda^{\bullet}\left(B^{\vee}\right)\right)$

Proof Sketch (Cont.)

$$
\begin{gathered}
0 \longrightarrow K[X] \cong K[X] \otimes K \xrightarrow{m_{X}} K[X] \otimes K^{\vee} \cong K[X] \longrightarrow 0 \\
\text { where } m_{X} \text { is multiplication by } X \\
H^{0}=\operatorname{ker} m_{X} /\{0\} \cong\{0\} \text { and } H^{1}=\mathbb{R}[X] / m_{X}(\mathbb{R}[X]) \cong \mathbb{R}
\end{gathered}
$$

Future work

Gluing of multivalued functionals and associated Lagrangians [Ald02] and Lie algebroids replacing jet bundles [GG20]
Consider $M=\left\{U_{i}\right\}$ and where $\ldots \rightrightarrows \sqcup U_{i j} \rightrightarrows \sqcup U_{i} \longrightarrow M$ via

$$
\begin{gathered}
\Omega^{p,|-q|, r}(N \mathcal{U U}):=\bigoplus_{i_{0}, \ldots, i_{r}} \Omega^{p,|-q|}\left(U_{i_{0}, \ldots, i_{r}}\right) \text { with } \check{\delta}: \Omega^{p,|-q|, r}(N \mathcal{U}) \longrightarrow \Omega^{p,|-q|, r+1}(N \mathcal{U}) \\
\text { as }(\check{\delta} \omega)_{i_{i_{1}} \ldots \ldots i_{r}}=\left.\sum_{k=0}^{r}(-1)^{k} \omega\right|_{i_{0} i_{1} \ldots \hat{i}_{k} \ldots i_{r}}
\end{gathered}
$$

- $L_{i}=a_{i} \wedge d a_{i}$ for $a_{i} \in \Omega^{p,|-(n-2)|, 1}\left(U_{i}\right)$
- $\delta a_{i j}=a_{j}-a_{i}=d b_{i j}$ for $b_{i j} \in \Omega^{p,|-(n-1)|, 2}\left(U_{i j}\right)$ (well-defined field strength)
- $\check{\delta} b_{i j k}=b_{j k}-b_{i k}+b_{i j}=d f_{i j k}$ for $f_{i j k} \in \Omega^{p,|-n|, 3}\left(U_{i j k}\right)$
- ${ }_{\delta} f_{i j k l}=f_{j k l}-f_{i k l}+f_{i j l}-f_{i j k}=0$

Future work (Cotd.)

- $L_{j}-L_{i}=\left(a_{j}-a_{i}\right) \wedge d a_{i}=d b_{i j} \wedge d a_{i}=d\left(b_{i j} \wedge d a_{i}\right)=L_{i j}$ where $b_{i j} \wedge d a_{i} \in \Omega^{|-(n-4)|, 2}\left(U_{i j}\right)$
- $L_{j k}-L_{i k}+L_{i j}=b_{j k} \wedge d a_{k}-b_{i k} \wedge d a_{k}+b_{i j} \wedge d a_{j}=d\left(f_{i j k} \wedge d a_{i}\right)$ where $f_{i j k} \wedge d a_{i} \in \Omega^{|-(n-3)|, 3}\left(U_{i j k}\right)$

What if $\delta a_{i}=\delta a_{j}$?
Then $\delta L_{i}=2 \delta a_{i} \wedge d a_{i}+(d+\check{\delta}) \gamma$
Or $\delta a_{i}-\delta a_{j}=d \delta b_{i j} ?$
$\delta L_{i}=f\left(\delta a_{i}, d a_{i}, \delta b_{i}, d b_{i}\right)+(d+\check{\delta}) \gamma$
with $f\left(\delta a_{i}, d a_{i}, \delta b_{i}, d b_{i}\right) \in \Omega^{1,|0|, 1}\left(U_{i}\right)$

References

Ettore Aldrovandi, Homological algebra of multivalued action functionals, Letters in Mathematical Physics 60 (2002), no. 1, 47-58.
Pierre Deligne and Daniel S Freed, Classical Field Theory, Quantum Fields and Strings: a Course for Mathematicians 1 (1999), 2.
Ryan Grady and Owen Gwilliam, Lie Algebroids As L_{∞} Spaces, Journal of the Institute of Mathematics of Jussieu 19 (2020), no. 2.
Floris Takens, A global version of the inverse problem of the calculus of variations, Journal of Differential Geometry 14 (1979), no. 4, 543-562.
嗇 Gregg J Zuckerman, Action principles and global geometry, Mathematical aspects of string theory, World Scientific, 1987, pp. 259-284.

