Variational Bicomplex and Takens' Theorem

Abdullah Naeem Malik

Department of Mathematics College of Arts and Sciences Florida State University

April XXII, 2021

Outline

- Introduction
- Mathematical background
- Mathematical apparatus
- Theorem
- Application
- Proof
- Future Work
- References

Introduction

$$\frac{x:\mathbb{R}\longrightarrow\mathbb{E}^{n}}{L=\frac{m}{2}\left|\dot{x}\right|^{2}dt=\frac{m}{2}\left\langle\dot{x},\dot{x}\right\rangle dt \text{ and } S=\int L}{\delta L=m\left\langle\dot{x},\delta\dot{x}\right\rangle dt=-m\left\langle\delta x,\ddot{x}\right\rangle dt+d\left\{m\left\langle\dot{x},\delta x\right\rangle\right\}}$$

Introduction

$$\begin{array}{c} x: \mathbb{R} \longrightarrow \mathbb{E}^n \\ L = \frac{m}{2} \left| \dot{x} \right|^2 dt = \frac{m}{2} \left\langle \dot{x}, \dot{x} \right\rangle dt \text{ and } S = \int L \\ \delta L = m \left\langle \dot{x}, \delta \dot{x} \right\rangle dt = -m \left\langle \delta x, \ddot{x} \right\rangle dt + d \left\{ m \left\langle \dot{x}, \delta x \right\rangle \right\} \end{array}$$

 $\begin{array}{c} x \text{ is a section of } \mathbb{E}^n \longrightarrow \mathbb{R} \\ \overline{L \in \Omega^n(M) \text{ is a volume form, depending only on first derivative of } x \\ \text{ What of the Euler-Lagrange Equation?} \end{array}$

Jet Bundles

- Let E → M be a submersion and s₁, s₂ ∈ Γ_{loc} (M, E) at x ∈ M. Define s₁ ~_k s₁ ⇐⇒ partial derivatives agree upto k. Let j^k (s) (x) be the resulting equivalence class.
- The jet bundle $\pi^k : J^k \longrightarrow M$ is fibered by $(\pi^k)^{-1}(x) = j^k(s)(x)$

Jet Bundles

- Let E → M be a submersion and s₁, s₂ ∈ Γ_{loc} (M, E) at x ∈ M. Define s₁ ~_k s₁ ⇐⇒ partial derivatives agree upto k. Let j^k (s) (x) be the resulting equivalence class.
- The jet bundle $\pi^k : J^k \longrightarrow M$ is fibered by $(\pi^k)^{-1}(x) = j^k(s)(x)$

For
$$k \leq \ell$$
, define $\pi_{\ell}^{k} : J^{\ell}(E) \longrightarrow J^{k}(E)$ as $\pi_{\ell}^{k}(j^{\ell}(s)(x)) = j^{k}(s)(x)$
 $J^{\infty}(E) = \varprojlim J^{k}(E) = \varprojlim (\dots \longrightarrow J^{2}(E) \longrightarrow J^{1}(E) \longrightarrow J^{0}(E) = E)$

Variational Bicomplex

• $\Omega^{k}(J^{\infty}(E)) = \bigoplus_{p+q=k} \Omega^{p,q}(J^{\infty}(E))$ where splitting is induced by contact ideal generated by $\theta_{I}^{\alpha} = du_{I}^{\alpha} - u_{I \cup \{i\}}^{\alpha} dx^{i}$ where $(x^{i}, u^{\alpha}, u_{I}^{\alpha})$ are coordinates on $J^{\infty}(E)$

• Let
$$\mathcal{F} = \Gamma(M, E)$$
 be sections of submersion $E \longrightarrow M^n$
• $\mathbf{ev} : \mathcal{F} \times M \xrightarrow{(j^{\infty}, id_M)} \Gamma(J^{\infty}(E), M) \times M \xrightarrow{\mathbf{ev}} J^{\infty}(E)$

$$\Omega_{\mathsf{loc}}^{p,q}\left(\mathcal{F} imes M
ight):=\mathbf{ev}^{*}\left(\Omega^{p,q}\left(J^{\infty}\left(E
ight)
ight)
ight)$$

Outline

- Introduction
- Mathematical background
- Mathematical apparatus
- Theorem
- Application
- Proof
- Future Work
- References

Formally...

- A field $\phi \in \mathcal{F} = \Gamma(M, E)$. Typically, $E \longrightarrow M$ is a submersion.
- $L \in \Omega_{loc}^{0,|0|}(\mathcal{F} \times M)$ where, for some k, L depends only on k-jet of $\phi \in \mathcal{F}$ and $\xi_1, \xi_2, ..., \xi_p \in T_{\phi}\mathcal{F}$
- **ELE** := $\delta L \mod \operatorname{im} d = 0 \text{ and } S : \Gamma(M, E) \longrightarrow \mathbb{R}$
- Phase space $\mathcal{M} = \{\phi \in \Gamma(M, E) : ELE(\phi) = 0\}$
- Conserved current $\eta \in \Omega^{0,|-1|}_{\mathsf{loc}} \left(\mathcal{F} imes \mathcal{M} \right)$ such that $d\eta = 0 \mod \mathsf{ELE}$
- $\gamma \in \Omega^{1,|-1|}_{loc}$ is variational 1-form (Cartan form) such that $\delta\gamma$ is a local symplectic form

Takens' Theorem

Theorem (Takens)

For p > 0, the complex $\left(\Omega_{\text{loc}}^{p,|\bullet|}(\mathcal{F} \times M), d\right)$ of local (twisted) forms is exact, except in the top degree $|\bullet| = 0$.

Takens' Theorem

Theorem (Takens)

For p > 0, the complex $\left(\Omega_{\text{loc}}^{p,|\bullet|}(\mathcal{F} \times M), d\right)$ of local (twisted) forms is exact, except in the top degree $|\bullet| = 0$.

For
$$p = 1$$
, consider $\delta L = D\mathcal{L} - d\gamma$ with $\gamma \in \Omega^{1,|-1|}_{\mathsf{loc}}$ and $L \in \Omega^{0,|0|}_{\mathsf{loc}}$.

Here, $\mathcal{L} = \mathbf{L} + \boldsymbol{\gamma}$ is the total Lagrangian, δL = non-exact source – exact form

Toy model

Let $E \longrightarrow M$ be an (oriented!) line bundle and

 $L = a \wedge |da| = a \wedge da$

be the Lagrangian density with $a \in \Omega^{|-(n-1)|}(M)$

 $\delta L = \delta a \wedge da + a \wedge \delta da = \delta a \wedge da - a \wedge d\delta a.$

Let $\gamma = a \wedge \delta a$.

d
$$\gamma = {\it d} {\it a} \wedge \delta {\it a} - {\it a} \wedge {\it d} \delta {\it a}$$

and

$$\delta L = \delta a \wedge da - a \wedge d\delta a \pm (da \wedge \delta a)$$

= $\delta a \wedge da + d\gamma - da \wedge \delta a = \underbrace{2\delta a \wedge da}_{DL} + d\gamma$

The symplectic form is $\delta \gamma = \delta a \wedge \delta a$

Outline

- Introduction
- Mathematical background
- Mathematical apparatus
- Theorem
- Application
- Proof
- Future Work
- References

Proof Sketch

Strategy

- Represent different variations of sections as vector bundles
- **②** Go local & grade the differentials from multi-indices to single index
- **③** Reduce the problem to dimension 1
- Apply a partition of unity argument

Proof Sketch

Strategy

- Represent different variations of sections as vector bundles
- O local & grade the differentials from multi-indices to single index
- **③** Reduce the problem to dimension 1
- Apply a partition of unity argument

Let $E \longrightarrow M$ be a submersion, $V_i \longrightarrow E$ be vector bundles for i = 1, ..., p, $V = \times_E V_i$ where, $\mathcal{V}_{\phi} = \Gamma(M, \phi^* V)$. Need to show that the subcomplex $\left(\Omega^{0, \bullet}_{loc, mult}(\mathcal{V}_{\phi} \times M), d\right)$ is exact except in the top degree $\bullet = 0$.

The complex consists of forms α (ϕ , ξ_1 , ..., ξ_p) which depend on *k*-jet of ϕ and on sections ξ_i of $\phi^* V_i$. Moreover, α is \mathbb{R} -multilinear in ξ_i

Lemma 1

Locally, the chain complex is

$$\bigotimes_{i=1}^{p} \bigotimes_{|n_{i}| \leq k} \pi^{(k)^{*}} Sym^{|n_{i}|} (TM) \otimes \pi^{(k)^{*}} (\Omega^{q} (M))$$
$$\longrightarrow \bigotimes_{i=1}^{p} \bigotimes_{|n_{i}| \leq k+1} \pi^{(k+1)^{*}} Sym^{|n_{i}|} (TM) \otimes \pi^{(k+1)^{*}} \left(\Omega^{q+1} (M)\right)$$

with differential
$$s \otimes \zeta \mapsto \left(\sum_{\ell} \left(\sum_{i=1}^{p} 1 \otimes ... \otimes (e_{\ell} \text{ at the } i \text{th place}) \otimes ... \otimes 1 \right) .s \right) \otimes e^{\ell} \wedge \zeta$$

Proof

$$\alpha\left(\phi,\xi_{1},...,\xi_{p}\right) = \sum \alpha_{n_{1},...,n_{p}}\left(\phi\right)\partial^{n_{1}}\xi_{1}...\partial^{n_{p}}\xi_{p}$$

$$N = \sum_{i=1}^{p} |n_{i}| \text{ and } Gr^{F}\left(\Omega_{loc,mult}^{0,q}\right) = \bigoplus_{N=0} F_{N+1}/F_{N} := \bigoplus_{N=0} Gr_{N}^{q}$$
where $F_{0} \subseteq F_{1} \subseteq ... \subseteq F_{N} \subseteq F_{N+1} \subseteq ...$

Next step:

$$\bigotimes_{1}^{p} Sym^{*}(T_{m_{0}}M) \otimes \Lambda^{q}(T_{m_{0}}^{\vee}M) \cong Sym^{*}(S) \otimes \overbrace{Sym^{*}(T_{m_{0}}M)}^{\text{degree } q} \otimes \Lambda^{q}(T_{m_{0}}^{\vee}M)$$

with $d(s \otimes \zeta) = \sum_{\ell} ((e_{\ell}.s) \otimes (e^{\ell} \wedge \zeta))$

Next step:

$$\bigotimes_{1}^{p} Sym^{*}(T_{m_{0}}M) \otimes \Lambda^{q}(T_{m_{0}}^{\vee}M) \cong Sym^{*}(S) \otimes \overbrace{Sym^{*}(T_{m_{0}}M) \otimes \Lambda^{q}(T_{m_{0}}^{\vee}M)}^{\text{degree } q}$$

with $d(s \otimes \zeta) = \sum_{\ell} ((e_{\ell}.s) \otimes (e^{\ell} \wedge \zeta))$

Lemma 2

For $T_{m_0}M = A \oplus B$,

 $Sym^* (A \oplus B) \otimes \Lambda^q (A^{\vee} \oplus B^{\vee}) \cong (Sym^* (A) \otimes \Lambda^{\bullet} (A^{\vee})) \otimes (Sym^* (B) \otimes \Lambda^{\bullet} (B^{\vee}))$

$$0 \longrightarrow \mathcal{K}[X] \cong \mathcal{K}[X] \otimes \mathcal{K} \xrightarrow{m_X} \mathcal{K}[X] \otimes \mathcal{K}^{\vee} \cong \mathcal{K}[X] \longrightarrow 0$$

where m_X is multiplication by X

 $H^0=\ker m_X/\left\{0
ight\}\cong\left\{0
ight\}$ and $H^1=\mathbb{R}\left[X
ight]/m_X\left(\mathbb{R}\left[X
ight]
ight)\cong\mathbb{R}$ \Box

Future work

Gluing of multivalued functionals and associated Lagrangians [Ald02] and Lie algebroids replacing jet bundles [GG20] Consider $M = \{U_i\}$ and where $... \rightrightarrows \sqcup U_{ij} \rightrightarrows \sqcup U_i \longrightarrow M$ via

$$\begin{split} \Omega^{p,|-q|,r}\left(N\mathcal{U}\right) &:= \bigoplus_{i_0,\ldots,i_r} \Omega^{p,|-q|}\left(U_{i_0,\ldots,i_r}\right) \text{ with } \check{\delta}: \Omega^{p,|-q|,r}\left(N\mathcal{U}\right) \longrightarrow \Omega^{p,|-q|,r+1}\left(N\mathcal{U}\right) \\ & \text{ as } \left(\check{\delta}\omega\right)_{i_0i_1\ldots i_r} = \sum_{k=0}^r \left(-1\right)^k \left.\omega\right|_{i_0i_1\ldots \widehat{i_k}\ldots i_r} \end{split}$$

L_i = a_i ∧ da_i for a_i ∈ Ω^{p,|-(n-2)|,1} (U_i)
δ´a_{ij} = a_j - a_i = db_{ij} for b_{ij} ∈ Ω^{p,|-(n-1)|,2} (U_{ij}) (well-defined field strength)
δ´b_{ijk} = b_{jk} - b_{ik} + b_{ij} = df_{ijk} for f_{ijk} ∈ Ω^{p,|-n|,3} (U_{ijk})
δ´f_{ijkl} = f_{jkl} - f_{ikl} + f_{ijl} - f_{ijk} = 0

Future work (Cotd.)

What if
$$\delta a_i = \delta a_j$$
?
Then $\delta L_i = 2\delta a_i \wedge da_i + (d + \check{\delta}) \gamma$
Or $\delta a_i - \delta a_j = d\delta b_{ij}$?
 $\delta L_i = f(\delta a_i, da_i, \delta b_i, db_i) + (d + \check{\delta}) \gamma$
with $f(\delta a_i, da_i, \delta b_i, db_i) \in \Omega^{1,|0|,1}(U_i)$
 $Q^{p,|0|,1} \leftarrow Q^{p,|-1|,1}$
 $\int_{\check{\delta}} Q^{p,|-1|,1} \downarrow_{\check{\delta}} Q^{p,|-1|,1}$

References

- Ettore Aldrovandi, *Homological algebra of multivalued action functionals*, Letters in Mathematical Physics **60** (2002), no. 1, 47–58.
- Pierre Deligne and Daniel S Freed, Classical Field Theory, Quantum Fields and Strings: a Course for Mathematicians 1 (1999), 2.
- Ryan Grady and Owen Gwilliam, *Lie Algebroids As* L_{∞} *Spaces*, Journal of the Institute of Mathematics of Jussieu **19** (2020), no. 2.
- Floris Takens, A global version of the inverse problem of the calculus of variations, Journal of Differential Geometry 14 (1979), no. 4, 543 – 562.
- Gregg J Zuckerman, *Action principles and global geometry*, Mathematical aspects of string theory, World Scientific, 1987, pp. 259–284.