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Introduction

{Vector Fields} {Lagrangian}

{Diff Eqs} {Diff Ops}

x : R −→ En

L = m
2 |ẋ |

2 dt = m
2 〈ẋ , ẋ〉 dt and S =

∫
L

δL = m 〈ẋ , δẋ〉 dt = −m 〈δx , ẍ〉 dt + d {m 〈ẋ , δx〉}

x is a section of En −→ R
L ∈ Ωn (M) is a volume form, depending only on first derivative of x

What of the Euler-Lagrange Equation?

Abdullah Naeem Malik (FSU) Advanced Topics Exam April XXII, 2021 3 / 17



Introduction

{Vector Fields} {Lagrangian}

{Diff Eqs} {Diff Ops}

x : R −→ En

L = m
2 |ẋ |
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Jet Bundles

Let E −→ M be a submersion and s1, s2 ∈ Γloc (M,E ) at x ∈ M. Define
s1 ∼k s1 ⇐⇒ partial derivatives agree upto k . Let jk (s) (x) be the resulting
equivalence class.

The jet bundle πk : Jk −→ M is fibered by
(
πk
)−1

(x) = jk (s) (x)

For k ≤ `, define πk
` : J` (E ) −→ Jk (E ) as πk

`

(
j` (s) (x)

)
= jk (s) (x)

J∞ (E ) = lim←−J
k (E ) = lim←−

(
... −→ J2 (E ) −→ J1 (E ) −→ J0 (E ) = E

)
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Variational Bicomplex

Ωk (J∞ (E )) =
⊕

p+q=k Ωp,q (J∞ (E )) where splitting is induced by contact

ideal generated by θαI = duαI − uαI∪{i}dx
i where

(
x i , uα, uαI

)
are coordinates

on J∞ (E )

Let F = Γ (M,E ) be sections of submersion E −→ Mn

ev : F ×M
(j∞,idM )−→ Γ (J∞ (E ) ,M)×M

ev−→ J∞ (E )

Ωp,q
loc (F ×M) := ev∗ (Ωp,q (J∞ (E )))

Ω
0,|0|
loc (F ×M)

δ−→ Ω
1,|0|
loc (F ×M)

δ−→ Ω
2,|0|
loc (F ×M)

δ−→ . . .
↑ d ↑ d ↑ d

Ω
0,|−1|
loc (F ×M)

δ−→ Ω
1,|−1|
loc (F ×M)

δ−→ Ω
2,|−1|
loc (F ×M)

δ−→ . . .
↑ d ↑ d ↑ d

...
...

...

Ω
0,|−n|
loc (F ×M)

δ−→ Ω
1,|−n|
loc (F ×M)

δ−→ Ω
2,|−n|
loc (F ×M)

δ−→ . . .
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Formally...

A field φ ∈ F = Γ (M,E ). Typically, E −→ M is a submersion.

L ∈ Ω
0,|0|
loc (F ×M) where, for some k , L depends only on k-jet of φ ∈ F and

ξ1, ξ2, ..., ξp ∈ TφF
ELE := δL mod imd = 0 and S : Γ (M,E ) −→ R
Phase space M = {φ ∈ Γ (M,E ) : ELE (φ) = 0}
Conserved current η ∈ Ω

0,|−1|
loc (F ×M) such that dη = 0 mod ELE

γ ∈ Ω
1,|−1|
loc is variational 1-form (Cartan form) such that δγ is a local

symplectic form

Ω0,|0| (F ×M)
δ−→ Ω1,|0| (F ×M)

δ−→ Ω2,|0| (F ×M)
δ−→ . . .

↑ d ↑ d ↑ d
Ω0,|−1| (F ×M)

δ−→ Ω1,|−1| (F ×M)
δ−→ Ω2,|−1| (F ×M)

δ−→ . . .
↑ d ↑ d ↑ d

...
...

...
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Takens’ Theorem

Theorem (Takens)

For p > 0, the complex
(

Ω
p,|•|
loc (F ×M) , d

)
of local (twisted) forms is exact,

except in the top degree |•| = 0.

For p = 1, consider δL = DL − dγ with γ ∈ Ω
1,|−1|
loc and L ∈ Ω

0,|0|
loc .

Here, L = L + γ is the total Lagrangian, δL = non-exact source − exact form
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Toy model

Let E −→ M be an (oriented!) line bundle and

L = a ∧ |da| = a ∧ da

be the Lagrangian density with a ∈ Ω|−(n−1)| (M)

δL = δa ∧ da + a ∧ δda = δa ∧ da− a ∧ dδa.

Let γ = a ∧ δa.
dγ = da ∧ δa− a ∧ dδa

and

δL = δa ∧ da− a ∧ dδa± (da ∧ δa)

= δa ∧ da + dγ − da ∧ δa = 2δa ∧ da︸ ︷︷ ︸
DL

+ dγ

The symplectic form is δγ = δa ∧ δa

Abdullah Naeem Malik (FSU) Advanced Topics Exam April XXII, 2021 9 / 17



Outline

Introduction

Mathematical background

Mathematical apparatus

Theorem

Application

Proof

Future Work

References

Abdullah Naeem Malik (FSU) Advanced Topics Exam April XXII, 2021 10 / 17



Proof Sketch

Strategy

1 Represent different variations of sections as vector bundles

2 Go local & grade the differentials from multi-indices to single index

3 Reduce the problem to dimension 1

4 Apply a partition of unity argument

Let E −→ M be a submersion, Vi −→ E be vector bundles for i = 1, ..., p,
V = ×EVi where, Vφ = Γ (M, φ∗V ). Need to show that the subcomplex(

Ω0,•
loc,mult (Vφ ×M) , d

)
is exact except in the top degree • = 0.

The complex consists of forms α (φ, ξ1, ..., ξp) which depend on k-jet of φ and on
sections ξi of φ∗Vi . Moreover, α is R-multilinear in ξi
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Proof Sketch (Cont.)

Lemma 1
Locally, the chain complex is

p⊗
i=1

⊗
|ni |≤k

π(k)∗Sym|ni | (TM)⊗ π(k)∗ (Ωq (M))

−→
p⊗

i=1

⊗
|ni |≤k+1

π(k+1)∗Sym|ni | (TM)⊗ π(k+1)∗
(

Ωq+1 (M)
)

with differential s ⊗ ζ 7→
(∑̀(

p∑
i=1

1⊗ ...⊗ (e` at the ith place)⊗ ...⊗ 1

)
.s

)
⊗ e` ∧ ζ

Proof

α (φ, ξ1, ..., ξp) =
∑

αn1,...,np (φ) ∂n1ξ1...∂
npξp

N =

p∑
i=1

|ni | and GrF
(

Ω0,q
loc,mult

)
=
⊕
N=0

FN+1/FN :=
⊕
N=0

GrqN

where F0 ⊆ F1 ⊆ ... ⊆ FN ⊆ FN+1 ⊆ ...
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Proof Sketch (Cont.)

Next step:

p⊗
1

Sym∗ (Tm0M)⊗ Λq
(
T∨m0

M
) ∼= Sym∗ (S)⊗

degree q︷ ︸︸ ︷
Sym∗ (Tm0M)⊗ Λq

(
T∨m0

M
)

with d (s ⊗ ζ) =
∑
`

(
(e`.s)⊗

(
e` ∧ ζ

))

Lemma 2
For Tm0M = A⊕ B,

Sym∗ (A⊕ B)⊗ Λq (A∨ ⊕ B∨) ∼= (Sym∗ (A)⊗ Λ• (A∨))⊗ (Sym∗ (B)⊗ Λ• (B∨))
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Proof Sketch (Cont.)

0 −→ K [X ] ∼= K [X ]⊗ K
mX−→ K [X ]⊗ K∨ ∼= K [X ] −→ 0

where mX is multiplication by X

H0 = kermX/ {0} ∼= {0} and H1 = R [X ] /mX (R [X ]) ∼= R
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Future work

Gluing of multivalued functionals and associated Lagrangians [Ald02] and Lie
algebroids replacing jet bundles [GG20]
Consider M = {Ui} and where ...→→→ tUij ⇒ tUi −→ M via

Ωp,|−q|,r (NU) :=
⊕

i0,...,ir

Ωp,|−q| (Ui0,...,ir ) with δ̌ : Ωp,|−q|,r (NU) −→ Ωp,|−q|,r+1 (NU)

as
(
δ̌ω
)
i0i1...ir

=
r∑

k=0

(−1)k ω|i0i1...îk ...ir

Li = ai ∧ dai for ai ∈ Ωp,|−(n−2)|,1 (Ui )

δ̌aij = aj − ai = dbij for bij ∈ Ωp,|−(n−1)|,2 (Uij) (well-defined field strength)

δ̌bijk = bjk − bik + bij = dfijk for fijk ∈ Ωp,|−n|,3 (Uijk)

δ̌fijkl = fjkl − fikl + fijl − fijk = 0
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Future work (Cotd.)

Lj − Li = (aj − ai ) ∧ dai = dbij ∧ dai = d (bij ∧ dai ) = Lij where
bij ∧ dai ∈ Ω|−(n−4)|,2 (Uij)

Ljk − Lik + Lij = bjk ∧ dak − bik ∧ dak + bij ∧ daj = d (fijk ∧ dai ) where
fijk ∧ dai ∈ Ω|−(n−3)|,3 (Uijk)

What if δai = δaj? Ωp,|0|,0

Ωp,|0|,1 Ωp,|−1|,1

... Ωp,|−n|,n

δ̌

d

δ̌

Then δLi = 2δai ∧ dai +
(
d + δ̌

)
γ

Or δai − δaj = dδbij?
δLi = f (δai , dai , δbi , dbi ) +

(
d + δ̌

)
γ

with f (δai , dai , δbi , dbi ) ∈ Ω1,|0|,1 (Ui )

Abdullah Naeem Malik (FSU) Advanced Topics Exam April XXII, 2021 16 / 17



References

Ettore Aldrovandi, Homological algebra of multivalued action functionals,
Letters in Mathematical Physics 60 (2002), no. 1, 47–58.

Pierre Deligne and Daniel S Freed, Classical Field Theory, Quantum Fields
and Strings: a Course for Mathematicians 1 (1999), 2.

Ryan Grady and Owen Gwilliam, Lie Algebroids As L∞ Spaces, Journal of the
Institute of Mathematics of Jussieu 19 (2020), no. 2.

Floris Takens, A global version of the inverse problem of the calculus of
variations, Journal of Differential Geometry 14 (1979), no. 4, 543 – 562.

Gregg J Zuckerman, Action principles and global geometry, Mathematical
aspects of string theory, World Scientific, 1987, pp. 259–284.

Abdullah Naeem Malik (FSU) Advanced Topics Exam April XXII, 2021 17 / 17


	Jet Bundles
	Variational Bicomplex
	Takens' Theorem
	Future work
	References

