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Recap: issues

o (0.1)+(1,0) _ (0.1)~(10)
V2 V2
Observables may be unbounded (some have empty spectrum)
Hvs B(0,1)
t is intrinsic.
o Hilbert spaces vs Semi-norm spaces|
°

o Why linear operators? [1]

e Why separable?[2] (uncountable eigenvectors)

e Why associative law? [5]
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von Neumann

| would like to make a confession which may seem immoral: |
do not believe absolutely in Hilbert space any more. After all,
Hilbert space was obtained by generalising Euclidean space,
footing on the principle of ‘conserving the validity of all formal
rules’. Now we begin to believe that it is not the vectors which
matter, but the lattice of all linear (closed) subspaces. Because:
1) The vectors ought to represent the physical states, but they
do it redundantly, up to a complex factor, only 2) and besides,
the states are merely a derived notion, the primitive
(phenomenologically given) notion being the qualities which
correspond to the linear closed subspaces [3].
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Outline

@ Our focus: skew fields KK and seminorm spaces
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@ Our focus: skew fields KK and seminorm spaces

Outcomes: Riesz Representation Theorem without completeness

Outcomes: Partial Orthomodularity

Outcomes: Non-existence of infinitesimals for Quantum Mechanics
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@ Our focus: skew fields KK and seminorm spaces

Outcomes: Riesz Representation Theorem without completeness
Outcomes: Partial Orthomodularity
Outcomes: Non-existence of infinitesimals for Quantum Mechanics

Outcomes: Adjoint of multivalued operators are single valued
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Algebraic Decomposition of Vectors: Basis

@ Vectors x1, X, ..., X, € X of the form th,-jx,-xj will be called a
multiplicative linear combination and will be multiplicatively
linearly independent if sz,-jx,-xj = 0 implies a;; = 0.
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Algebraic Decomposition of Vectors: Basis

@ Vectors x1, X, ..., X, € X of the form th,-jx,-xj will be called a
multiplicative linear combination and will be multiplicatively
linearly independent if sz,-jx,-xj = 0 implies a;; = 0.

@ m-Hamel basis if every finite multiplicative linear combination of
B C X is multiplicative linearly independent

e BC m A:= (B)

A€[B]
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Algebraic Decomposition of Vectors: Basis

@ Vectors x1, X, ..., X, € X of the form Zoc,-jx,-xj will be called a
multiplicative linear combination and will be multiplicatively
linearly independent if sz,-jx,-xj = 0 implies a;; = 0.

@ m-Hamel basis if every finite multiplicative linear combination of
B C X is multiplicative linearly independent

e BC ﬂ A:= (B)

A€[B]
e X=(B)and Y =(C)is X®Y = (BxC(C)

Instead of 1,1, j, k as Hamel basis for the quaternion algebra H over R,
we can have i, j because then ij = k and > = j2 = —1 generates the
quaternions. i, j are multiplicative-linearly independent.
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Algebraic Decomposition of Vectors: Basis

B is a basis if and only if B is minimal. That is, deletion of any element
from B, except 0 if 0 € B, does not form a basis
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Algebraic Decomposition of Vectors: Basis

B is a basis if and only if B is minimal. That is, deletion of any element
from B, except 0 if 0 € B, does not form a basis

For any two basis C, B of X,

B = [C]
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For any two basis C, B of X,

Bl = ||
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Algebraic Decomposition of Vectors: Basis

B is a basis if and only if B is minimal. That is, deletion of any element
from B, except 0 if 0 € B, does not form a basis

For any two basis C, B of X,

Bl = ||

Every m-Hamel basis gives rise to a Hamel basis

Letting x;x; = x; in “th,-jx,-xj =0 impliesajj =0 for 1 </, j < k"
implies linear independence [

Every K-algebra X possesses a m-Hamel basis
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Algebraic Decomposition of Vectors: Basis
A totally ordered division IKK-algebra X over a skew field is K.

Proof
f : X — F (non-trivial, positive)
Va € F, ne EX

f(x)=~f(y) = Z(wu U) v,)f(vj)—Owherex—szvaj
and y = Eﬁijv;vj are positive elements. Let
Ay — <zx,-j ﬁu) f (vi)f(vj). Then, ) a; =0 = a; =0. Thus,

(uc,-j - ﬁu) =0, f(v;) =0or f(vj) = 0. Hence aj = B,;. For negative
vectors, let g : X — F such that g = —f. Ol

v
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Mappings

Definition

Let X be a vector space over IF and Y be vector space over K and let

¢ : IF — KK be a homomorphism. Then, an operator T : X — Y is a
¢-vector space homomorphism between X and Y if for all x,y € X and
scalarsw € F, T(ax+By) =¢ (a) T (x)+¢(B) T (y). T is an
isomorphism if T and ¢ are bijective. A ¢-algebra homomorphism is of
the form T ((ax) (By)) = T(aBxy) = ¢ (af) T (x) T (y), which we shall
call an isomorphism if ¢ and T are bijective.

Abdullah (QAU) HSQM and Occam’s Razor 10/03/16 9 /26



Mappings

Definition

Let X be a vector space over IF and Y be vector space over K and let

¢ : IF — KK be a homomorphism. Then, an operator T : X — Y is a
¢-vector space homomorphism between X and Y if for all x,y € X and
scalarsa € F, T(ax+By) =¢ () T (x)+¢(B) T (y). T is an
isomorphism if T and ¢ are bijective. A ¢-algebra homomorphism is of
the form T ((ax) (By)) = T(aBxy) = ¢ (af) T (x) T (y), which we shall
call an isomorphism if ¢ and T are bijective.

Definition
T={(x,z): x € V,z€ W} is a relation, then
(ax + By) Tz = ¢ (&) xTz + ¢ (B) y Tz.

| \
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Mappings

Definition

Let X be a vector space over IF and Y be vector space over K and let

¢ : IF — KK be a homomorphism. Then, an operator T : X — Y is a
¢-vector space homomorphism between X and Y if for all x,y € X and
scalarsa € F, T(ax+By) =¢ () T (x)+¢(B) T (y). T is an
isomorphism if T and ¢ are bijective. A ¢-algebra homomorphism is of
the form T ((ax) (By)) = T(aBxy) = ¢ (af) T (x) T (y), which we shall
call an isomorphism if ¢ and T are bijective.

| \

Definition
T={(x,z): x € V,z€ W} is a relation, then
(ax + By) Tz = ¢ (&) xTz + ¢ (B) y Tz.

Preservation of multiplicative linear dependence if T is injective (not ¢)
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Axioms for seminorm space N

o [[x] =0 = x =0 (non-degeneracy)

o ||ax|| = |af ||x]| for all « € K, Vx € N (homogeneity)

o |Ix+y| <|x||+ |ly| for arbitrary x,y € N or
[+l < max (fIx][ . [ly[]

e Seminorm from underlying field: [|x|| := |g (x)|

@ Outcomes: [|0|| =0, ||x|| = ||—x|| and ||x| >0

e Norm: N/W where W =set v s.t. ||v|| =0

2
[ [] = [Ix[I* = lIxyll < [Ix] Iyll{4] = [le]| > 1
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Axioms for seminorm space N

o [[x] =0 = x =0 (non-degeneracy)

o ||ax|| = |af ||x]| for all « € K, Vx € N (homogeneity)

o |Ix+y| <|x||+ |ly| for arbitrary x,y € N or
[+l < max (fIx][ . [ly[]

e Seminorm from underlying field: [|x|| := |g (x)|

@ Outcomes: [|0|| =0, ||x|| = ||—x|| and ||x| >0

e Norm: N/W where W =set v s.t. ||v|| =0

2
[ [] = [Ix[I* = lIxyll < [Ix] Iyll{4] = [le]| > 1

@ Axiom of choice!
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Sesquilinear forms

Let X be a vector space over K. A f-sesquilinear 2-form is a function
@ : XxX — K such that Va € K and Vx,y,z € X

° ¢(x+y.2z) =9 (x2)+¢(y2)
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Sesquilinear forms

Let X be a vector space over K. A f-sesquilinear 2-form is a function
@ : XxX — K such that Va € K and Vx,y,z € X

¢(x+y.2)=¢((x2)+9(y2)
¢(xy+2)=¢(xy)+¢x2)
¢ (x.ay) = ¢ (x,y) &
o ¢ (ax,y) =1 (a) @ (x,y) where f : K — K is an involutive
anti-automorphism.

Abdullah (QAU) HSQM and Occam’s Razor 10/03/16 11 /26



Sesquilinear forms

Let X be a vector space over K. A f-sesquilinear 2-form is a function
@ : XxX — K such that Va € K and Vx,y,z € X

p(xtyz)=¢(x2)+¢(y2)
p(xy+z)=0¢(xy)+¢(x2)
¢ (

x,ay) = ¢ (x,y)a
o ¢ (ax,y) =1 (a) @ (x,y) where f : K — K is an involutive
anti-automorphism.

e Outcomes: |9 (0.y) = ¢(x,0) =0
icharK =2 implies ¢ (v,v) =0 <= ¢ (v,w) = —¢ (w, V)|
p(x.y) =f(@(y.x)) < ¢ (x,x) € Rand
e x)o(y. y) > ¢(x, y)@(y. x) if ¢ (x,x) >0
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Sesquilinear forms

¢ (x,x) := ||x||* for p=Hermitian and |f («)| = |«
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Sesquilinear forms

Lemma

¢ (x,x) := ||x||* for p=Hermitian and |f («)| = |«

Proof.
lax||? = |a]? ||x||* and [|x+ y||> ,
<o (x, %)+l (x,y)| + @ (y. )|+ @ (v, ¥)| < (]| + llyll)

<max([g (x,x)|,|@ (x,¥)], ¢ (y,x)[ . [¢(y,y)]). Now, if
¢ (x,y) =a+bfora beKfor f(a)=aandf(b)# b, then

|al.[B] < lIx[l [[yll [t] == max{[al,|b[} < |[x] [ly[| so that

max (|¢ (x, x)[ |¢ (y. x)| ¢ (y.y)]) = max{[[x][. ly[|}
If x # 0 implies ¢ (x,x) > 0, then N1 O

| A
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Sesquilinear forms

Lemma

¢ (x,x) := ||x||* for p=Hermitian and |f («)| = |«

Proof.
lax||? = |a]? ||x||* and [|x+ y||> ,
<o (x, %)+l (x,y)| + @ (y. )|+ @ (v, ¥)| < (]| + llyll)

<max([g (x,x)|,|@ (x,¥)], ¢ (y,x)[ . [¢(y,y)]). Now, if
¢ (x,y) =a+bfora beKfor f(a)=aandf(b)# b, then

|al.[B] < lIx[l [[yll [t] == max{[al,|b[} < |[x] [ly[| so that

max (|¢ (x, x)[ |¢ (y. x)| ¢ (y.y)]) = max{[[x][. ly[|}
If x # 0 implies ¢ (x,x) > 0, then N1 O

| A

° [p(xy)l < mlx[lllyl = ¢ (xayn) — ¢ (x,y)
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Closed subspaces and associated algebra[2]

o Ar— At — AC A ACB — AL C Bt and
ALLLL _ plL
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Closed subspaces and associated algebra[2]

o Ar— At — AC A ACB — AL C Bt and
ALLLL _ plL

ALt s the smallest subspace containing A

Assume there exists a closed B such that A C B C AtL. Then, B = B+t
and A C B*t C ALt so that B € At and ALLL = AL C B+ and
hence B++ = ALL, []
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Closed subspaces and associated algebra[2]

o Ar— At — AC A ACB — AL C Bt and
ALLLL _ plL

ALt s the smallest subspace containing A

Assume there exists a closed B such that A C B C AtL. Then, B = B+t
and A C B*t C ALt so that B € At and ALLL = AL C B+ and
hence B++ = ALL, ]

A closed relation (T = T+1) T is linear
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Closed subspaces and associated algebra[2]

T is a subspace of X & X. Plus T (ax) = f (a) T (x) if
a(x,y) = (ax, f(a)y) O
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T is a subspace of X & X. Plus T (ax) = f (a) T (x) if
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If T is closed, then ker (T) is closed
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a(x,y) = (ax, f(a)y) O

If T is closed, then ker (T) is closed

o T+S={(xy):y=s+tforsecR(S),teR(T)}
e ToS=TS5={(x,z):(x,y) € Sand (y,z) € T for some y}
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Closed subspaces and associated algebra[2]

T is a subspace of X & X. Plus T (ax) = f (a) T (x) if
a(x,y) = (ax, f(a)y) O

If T is closed, then ker (T) is closed

o T+S={(xy):y=s+tforsecR(S),teR(T)}

e ToS=TS5={(x,z):(x,y) € Sand (y,z) € T for some y}
e O={(x,0)}, I ={(x,x)} and AT = {(x,Ay) : (x,y) € T}
@ RS+ RT C R(S+ T). Converse holds if D (R) = X
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Closed subspaces and associated algebra[2]

T is a subspace of X & X. Plus T (ax) = f (a) T (x) if
a(x,y) = (ax, f(a)y) O

If T is closed, then ker (T) is closed

T+S={(xy):y=s+tforsecR(S),teR(T)}
ToS=TS5={(x,z):(x,y) € Sand (y,z) € T for some y}
O={(x,0)}, I ={(x,x)} and AT = {(x,Ay) : (x,y) € T}
RS+ RT C R(S+ T). Converse holds if D (R) = X

(5+ T)R C SR+ TR. Converse holds if R is single-valued.
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Closed subspaces and associated algebra[2]

T is a subspace of X & X. Plus T (ax) = f (a) T (x) if
a(x,y) = (ax, f(a)y) O

If T is closed, then ker (T) is closed

T+S={(xy):y=s+tforsecR(S),teR(T)}
ToS=TS5={(x,z):(x,y) € Sand (y,z) € T for some y}
O={(x,0)}, I ={(x,x)} and AT = {(x,Ay) : (x,y) € T}
RS+ RT C R(S+ T). Converse holds if D (R) = X

(5+ T)R C SR+ TR. Converse holds if R is single-valued.
ker T =kerS and R(S) =R (T), then S C T implies S = T.
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Closed subspaces and associated algebra[2]

A single-valued, linear adjoint of densely defined (D (T = X) relation
T will always exist
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Closed subspaces and associated algebra[2]

A single-valued, linear adjoint of densely defined (D (T = X) relation
T will always exist

Proof.

U: X xX— XxXbyU(x,y):=(—y,x). Well-defined+bijective.
(2, w) = (9@ ) (2. W)xux = ¢ (21, 1) + ¢ (22, W2)

— O (U(z), w)=®(z,U(w))

For MC X x X, T* = U (M') = U(M)*

¢ (Tx,y) =¢(x, T*w) for (x,z) € T and (y,w) € T* O

| A\

\
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Closed subspaces and associated algebra[2]

A single-valued, linear adjoint of densely defined (D (T = X) relation
T will always exist

Proof.

U: X xX— XxXbyU(x,y):=(—y,x). Well-defined+bijective.
(2, w) = (9@ ) (2. W)xux = ¢ (21, 1) + ¢ (22, W2)

— O (U(z), w)=®(z,U(w))

For MC X x X, T* = U (M') = U(M)*

¢ (Tx,y) =¢(x, T*w) for (x,z) € T and (y,w) € T* O

| A\

Outcomes ker T* = R(T)L. (AT)" =f(A) T, (Tﬁl)* = (T*)_lv
T = (_Tfl)J—, T = (_Tfl)J-
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Closed subspaces and associated algebra[2]

A single-valued, linear adjoint of densely defined (D (T = X) relation
T will always exist

Proof.

U: X xX— XxXbyU(x,y):=(—y,x). Well-defined+bijective.
(2, w) = (9@ ) (2. W)xux = ¢ (21, 1) + ¢ (22, W2)

— O (U(z), w)=®(z,U(w))

For MC X x X, T* = U (M') = U(M)*

¢ (Tx,y) =¢(x, T*w) for (x,z) € T and (y,w) € T* O

| A\

Outcomes ker T* = R (T):, (AT)* = F(A) T, (T-1)" =(T%) 7},
T = (-T Y, T =(-T )"
Outcomes D (T)™ = E <= T* is single-valued
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Closed subspaces and associated algebra[2]

@ Canonical * operation?
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Closed subspaces and associated algebra[2]

@ Canonical * operation?
o We need *(a+b) = x(a) + x (b), * (xa) = f (a) * (a),
% (% (a)) = a, x (ab) = * (b) x (a).
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Closed subspaces and associated algebra[2]

@ Canonical * operation?

o We need *(a+b) = x(a) + x (b), * (xa) = f (a) * (a),
% (% (a)) = a, x (ab) = * (b) x (a).

@ Possible if * (x) = * (Z(x,-jv,-vj) = Zf («jj) vivj provided
| ()] = [«
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Closed subspaces and associated algebra[2]

@ Canonical * operation?

o We need *x(a+b) = x(a) + x(b), x (axa) = f (a) * (a),
% (% (a)) = a, x (ab) = * (b) x (a).

@ Possible if * (x) = * (Z(x,-jv,-vj) = Zf («jj) vivj provided
| (a)] = |a]

o = [ =1 = [a"a| < [a|?
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Closed subspaces and associated algebra[2]

@ Canonical * operation?

o We need *x(a+b) = x(a) + x(b), x (axa) = f (a) * (a),
% (% (a)) = a, x (ab) = * (b) x (a).

o Possible if * (x) = ()_ajvivj) = ) f (a;) vjv; provided
| (@)| = |a]

o = [lx| =1 = [a"al| < |la])®

@ Question: what seminorm on By, (X)?
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Closed subspaces and associated algebra[2]

@ Canonical * operation?

o We need *x(a+b) = x(a) + x(b), x (axa) = f (a) * (a),
% (% (a)) = a, x (ab) = * (b) x (a).

o Possible if * (x) = ()_ajvivj) = ) f (a;) vjv; provided
|F ()] = |ax]

o = || =1 = |a"al| < |la|*

@ Question: what seminorm on By, (X)?

) Tx
o | T|| =limsupl Xl — ||RT|| > |IR|| || T||[5]

[l

[[x[|—e0
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Closed subspaces and associated algebra[2]

@ Canonical * operation?

o We need *x(a+b) = x(a) + x(b), x (axa) = f (a) * (a),
*(x(a)) =a, *(ab) = x(b) * ( a).

o Possible if * (x) = ()_ajvivj) = ) f (a;) vjv; provided
|F ()] = |1X|

o = [lx| =1 = [a"al| < |a|"

@ Question: what seminorm on By, (X)?

Il = lims supliil = IRT| = RI | T[]

° 17l = sup Il = IRTI < IRIIT) (care for

laT ]l = |¢ (@) T
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Properties of operator algebra

A unital Weak Banach algebra (X, ||.||) is a complete subalgebra of By (X)
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Properties of operator algebra

A unital Weak Banach algebra (X, ||.||) is a complete subalgebra of By (X)

Proof.
Ly (y) :=xy. Then, Ly € By(X). Then, L: X — By (X) as L(x) = Ly
is a homomorphism and ||x||, := || || is equivalent to ||.]| O

Theorem
There are no multiplicative linear functionals on By (X)

.
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Properties of operator algebra

A unital Weak Banach algebra (X, ||.||) is a complete subalgebra of By (X)

Proof.
Ly (y) :=xy. Then, Ly € By(X). Then, L: X — By (X) as L(x) = Ly
is a homomorphism and ||x||, := || || is equivalent to ||.]| O

Theorem

There are no multiplicative linear functionals on By (X)

.

@ Proof: VA € K, Al€By (X) = g (I) = e. Consider orthogonal
projection operators P and Q € By (X) s.t. dim P (X) = dim Q (X).
Then, T : P(X) — Q(X), a partial isometry such that P = T*T,
Q= TT" sothat PQ =0 = g (Q) = g (P) = 0. Further,
P+Q=1 = e=g(l)=¢g(P)+g(Q)=0
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Riesz Representation Theorem on Hermitian Spaces|2]

3 cts linear functional g : (X, ¢, K) — X* such that R(g) = X'.
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Riesz Representation Theorem on Hermitian Spaces|2]

3 cts linear functional g : (X, ¢, K) — X* such that R(g) = X'.

o gisctsi=kerg = kergtt
Proof.
gy : X — X*st. gy (x) =@ (y,x) )
(injective+-well-define) = R (g) C X . g, cts since
kerg, = {ky : k € IK}l
Conversely, forhe X', h=0 = ggo=h = he R (g).
h#0 — dimh=1
= X =kerh@® {kv: k € K}. Letting w = f 1 (qo(v,z)f1 h(v)) z
for z € ker bt and z & {kv : k € K} gives us h(v) = ¢ (v, w).
X3x=x1+av = h(x)=ah(v) = ¢(x,w)=ap(v,w) =
h= gy [

v
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Riesz Representation Theorem on Hermitian Spaces|2]

Kernel of each element of g (A) is splitting.
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Riesz Representation Theorem on Hermitian Spaces|2]

Kernel of each element of g (A) is splitting.

e F C X splitting if X = F @& F+, A= collection of anisotropic vectors

If y is anisotropic, then y & {ky : k € ]K}L so
kergy:{ky:kelK}l = X:kert.gyEBkergyl O
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Riesz Representation Theorem on Hermitian Spaces|2]

Kernel of each element of g (A) is splitting.

e F C X splitting if X = F @& F+, A= collection of anisotropic vectors
Proof.

If y is anisotropic, then y & {ky : k € ]K}L so
kergy:{ky:kEIK}l = X:kergy@kergyl O

| N\

Corollary

@ admits nonzero isotropic vectors, then there are closed subspaces of X
that are not splitting.
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Riesz Representation Theorem on Hermitian Spaces|2]

Kernel of each element of g (A) is splitting.

e F C X splitting if X = F @& F+, A= collection of anisotropic vectors
Proof.

If y is anisotropic, then y & {ky : k € ]K}L so
kergy:{ky:kEIK}l = X:kergy@kergyl N

| A

Corollary

@ admits nonzero isotropic vectors, then there are closed subspaces of X
that are not splitting.

| A\

Proof.
If 0 # y € X such that ¢ (y,y) =0, then
{ky -k e K} @ {ky : k e K}" C X O
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Definition

A space X is orthomodular if for all closed F C X, X = F@ F+
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Orthomodularity

Definition
A space X is orthomodular if for all closed F C X, X = F@ F+

Definition

A lattice L is orthomodular if x < z implies x V (x’ A z) = z for all
x,z €L
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Definition
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Orthomodularity

Definition
A space X is orthomodular if for all closed F C X, X = F@ F+

Definition

A lattice L is orthomodular if x < z implies x V (x’ A z) = z for all
x,z €L

H is orthomodular <= L=C(H) is orthomodular

— FLL

e If a Hermitian space is orthomodular, then (F) and such sets
form atomic ortholattice which is isomorphic to the lattice of closed
subspaces of a Hilbert space over an arbitrary Archimedean skew
field[6].
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Solr's theorem

Let (X, K, @) be an infinite dimensional orthomodular space over a skew
field K which contains an orthonormal system (e;);en. Then K is either
R, C or H and (X, K, ¢) is a Hilbert space [4]
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Solr's theorem

Theorem

Let (X, K, @) be an infinite dimensional orthomodular space over a skew
field K which contains an orthonormal system (e;);en. Then K is either
R, C or H and (X, K, ¢) is a Hilbert space [4]

nx= ()} pe)x=0 <<= (I pe)=0<«<= n=0

— QCK

V(@) ;e € QN with a:= Y2 ja? € Q, then Ix = ¥jcn- i € X,
with (x) =«

Define 172 af — (Lien iei)

This is multiplicative linear function so that R C K

— (DC,‘),'G]N € h (]R) with o := Z(,w:o 06,2, Ix =Y enwiei € X such that
(a) =« O

v
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Solr's theorem

Proof.

(cotd.)
Next, RC Z = {x | xy = yx, Vy € K} = R =S5 (K) using

SCP:= {(x> | @ 5 52 = g%\{@’,-e;, ¢ eR(y)VieNand (x) € ]R(')/)}

where v € S

Ae K\R = R(A) =C

Ae K\C = C+CA=H =

A€ K\H = H+ HA = H, contradiction

Hence X = h(K) and K=R, C or H O

Abdullah (QAU) HSQM and Occam’s Razor 10/03/16 22 /26



Conclusion

@ Orthomodularity is important
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Conclusion

@ Orthomodularity is important
@ <= Non-existence of isotropic vectors

@ Non-Archimedean fields
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@ Does there exist a (countable?) eigenbasis decomposition of a
non-linear operator on a Hermitian space over a non-Archimedean
field?
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@ Does there exist a (countable?) eigenbasis decomposition of a
non-linear operator on a Hermitian space over a non-Archimedean

field?
@ Over which non-Archimedean fields are Hermitian spaces
orthomodular?
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