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Preface

This set of notes is meant to aid the lectures for MTH327 Functional Analysis
and MTH427 Introduction to Hilbert Spaces at COMSATS Institute of Infor-
mation Technology, Virtual Campus. I have tried to explain material where
necessary and added some theorems which aid in the explanation of the text
apart from the usual syllabus delivered. Most of the exercise questions have
been solved. Where necessary, only hints have been given. The course majorly
follows the text given by the Functional Analysis classic titled "Introductory
Functional Analysis with Applications" by Erwin Kreyszig (January 6, 1922 �
December 12, 2008), �rst published in 1962.
Functional Analysis is a body of knowledge and tools from calculus and

algebra in which one explores the role of di¤erent spaces, their elements and op-
erators acting on them. Mathematically, a space is any set with some structure
on it. These set of notes explores such an endeavour. While I have tried to make
these notes self-contained, the introductory chapters, which are not supposed to
be mandatory, need to be looked at before the course begins. The �rst chapter
is just a review of set theory to get some notation straight. The second chapter
of algebra, Group Theory, goes through some basics. Of course the basics in no
way mean that one can develop a mastery of the subject of algebra. Neverthe-
less, once the details of the chapter are kept in mind, the student should have
no di¢ culty in understanding their use in the text. Of particular importance is
the role of a binary operator. You can imagine this as a machine in which two
elements belonging to a particular set are sent because of which the machine
gives out usually a di¤erent element of the same set as a result. The rigorous
notation for the binary function should make this clear. The next important
idea of group theory used in these texts is the idea of an inverse, substructures
and that of isomorphism. Be sure to keep those in mind before you proceed.
Set Topology has been given extensive attention. From a hierarchial point of

view, topological spaces are the most general type of spaces there are, followed
by metric spaces, vector spaces, norm spaces, inner product spaces and �nally
Hilbert spaces. It is thus no surprise that Set Topology is freely indulged in,
since notions and ideas from this �eld are used in the rest of the text. Other
than that, there is this notion of a topological vector space � a vector space
with a topology. This has not been covered in the lectures. If it were so, one
could freely indulge in the fact that geometry is more than just space �it is an
additional structure on space. Even though this has been covered in these notes
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but with limitations by discarding topology for the moment.
I have tried to make the text proceed just as the lectures do, starting from

vector spaces. However, I made some changes to keep the �ow of this monologue
in line with my preferences.
Vector spaces are the subject of study in linear algebra but they are in-

corporated in the syllabus for the course because from them one can move on
to Hilbert spaces making a tour from norm spaces and inner product spaces,
exploring the mathematics of operators acting on them. Hilbert spaces, while
important in their own right, are very important in mathematics from an ap-
plication point of view. Sadly, the length of the course does not a¤ord the time
and space for most of these applications.
I hope the material is su¢ cient to give you a glimpse of the abstract of the

abstract world. Just like music cannot be learned by simply watching a musician
play an instrument and language cannot be learned by merely listening, so, too,
can mathematics not be learned by merely reading. The reader has to indulge in
it, be challenged, try to do proofs on your own, look at everything from di¤erent
perspectives and see why things are the way things are. A piece of sincere advise
would be thus: wherever you see a question pop or an exercise, do pause for a
moment to do some scribbling.
As has been my experience, I, at times, found "left as an exercise to the

reader" frustrating because the book under consideration usually did not provide
su¢ cient details for me to do the exercise/proof on my own. However, these
notes are scattered with hints and can be done if enough attention is devoted
to each line (except for the �rst two chapters). Wherever you do see this, you
may assume that I have either been lazy or know that the required exercise is
routine matter/easy.
This endeavour is a single-handed production and it is bound to be �awed.

I welcome any suggestions for improvements, any gaps that might need more
explanation, any typos and even incorrect proofs.



Introduction

Functional analysis is an abstract branch of mathematics that originated from
classical analysis. It can be viewed as a great leap from Linear Algebra and its
interplay with Topology. The name is derived from the word "functional" which
is a particular generalisation of the real-valued function. Technically, its name
is derived from a function whose argument is a function and the name was �rst
used in Hadamard�s 1910 book on that subject. This is covered in the course
MTH485 Calculus of Variation. The general concept of functional had previ-
ously been introduced in 1887 by the Italian mathematician and physicist Vito
Volterra in his attempt to look at Integral Equations. The theory of nonlinear
gunctionals was continued by students of Hadamard; in particular, by Fréchet
and Lévy. Hadamard also founded the modern school of linear functional analy-
sis further developed by Riesz and the group of Polish mathematicians around
Stefan Banach. In modern introductory texts to functional analysis, the sub-
ject is seen as the study of vector spaces endowed with a topology, in particular
in�nite dimensional spaces. In contrast, linear algebra deals mostly with �nite
dimensional spaces, and does not use topology. An important part of functional
analysis is the extension of the theory of measure, integration, and probability
to in�nite dimensional spaces, also known as in�nite dimensional analysis.
Historically, the impetus came from problems related to ordinary and par-

tial di¤erential equations, numerical analysis, calculus of variations, approx-
imation theory and integral equations. Ordinarily, one deals with limiting
processes in �nite dimensional vector spaces (R or Rn) but problems arising
in the above applications required a calculus in spaces of functions (which are
in�nite dimensional vector spaces), among other spaces. The theory was fur-
ther re�ned by David Hilbert with his Hilbert spaces in his attempt to look
for solutions of Integral Equations, an excellent review of which may be found
at http://www.cs.umd.edu/~stewart/FHS.pdf. The applications of such spaces
are found to be enormous in the �elds of Quantum Mechanics, Numerical Analy-
sis, Complex Analysis, Real Analysis, Optimisation, Fourier Analysis and Op-
erator Theory, to name a few.
Functional analysis is a branch of mathematical analysis, the core of which

is formed by the study of vector spaces endowed with some kind of limit-related
structure (e.g. inner product, norm, topology, etc.) and the linear operators
acting upon these spaces and respecting these structures in a suitable sense.
The historical roots of functional analysis lie in the study of spaces of functions
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and the formulation of properties of transformations of functions such as the
Fourier transform as transformations de�ning continuous, unitary etc. operators
between function spaces, as has been explored in the text. This point of view
turned out to be particularly useful for the study of di¤erential and integral
equations. Thus, Functional Analysis is a vast generalisation of various tools
used in applications of di¤erent equations.
The study of objects in a particular space is the subject of Geometry whereas

Functional Analysis plays a part in the study of spaces, among other subjects
such as Algebraic Topology. The idea of seperating a space independtly from
its objects was �rst concieved by Bertrand Reimann in his seminal lecture of
1854. This subject will view some of such ideas, too.



Part I

Preliminaries
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This part of the book will focus on the ground-work, building our way to
the areas which Functional Analysis is famous for. We will start with set theory
in order to set some notions straight, work our way with some group theory.
Some Set Topology as needed has been introduced, as well. The gentle introduc-
tion continues its way slowly by turning from an introduction of norm spaces
and vector spaces, regressing to familiar concepts of metric spaces and then
amplifying the theory of norm and vector spaces with the addition of Cauchy
Sequences and operators. We then move on to study functionals and the im-
portant Dual Spaces before skimming over Pre-Hilbert Spaces and then �nally
to Hilbert Spaces.



Set Theory

In this chapter, an attempt to de�ne all of the symbols and mathematics used
in this book has been undertaken and every e¤ort has been made to ensure
that the notes are self-contained. However, this portion is not intended to
be a substitute for any rigorous treatment. The purpose of this section is to
serve as an introductory reminder for what follows since most of the students
come from a di¤erent backgrounds. Hence, this section may be skipped, if
necessary. Sections where a slight introduction is necessary have been placed
under appropriate headings. Proofs and extensive examples are intentionally
omitted and have been left as an exercise for the reader for this chapter. The
reader is encouraged to try to attempt such proofs, apart from the exercise as
they will serve as "warm ups".

1.1 Basics

De�nition 1 A set is any well-de�ned collection of distinct objects.

The words "well-de�ned", "collection" and "objects" may be vague and we
will not indulge in commenting any further. An intuitive understanding is as-
sumed. The word "class" will be reserved for a collection of sets.
The stated collection is denoted by capital letters while the members are

listed using curly braces, separated by commas. If an element p in a set A,
then the statement �p belongs to A�or �p is in A� is mathematically written
as p 2 A.

Example 2 The empty set fg. This special case is denoted by ?. All other
sets are non-empty.

Elements which do not belong to a setX will always belong to its complement
X{. The complement of a set is always de�ned relative to a universal set.

Example 3 (Non-example) The collection of those collections of objects that
are not members of themselves is mathematically written as fx j x =2 xg. This
is not a set, for historical and technical reasons, which we will not mention.

Remark 4 We will assume that the set of natural numbers N := f1; 2; 3; :::g
exists from which the set of reals can be constructed using the Dedekind Cuts.

x



1.1. BASICS xi

For a rigorous treatment on the subject, see Tom M. Apostol�s Calculus. The
usual (classical) logical conventions of exclusive true/false are assumed. "I¤",
"if and only if" and ", " will mean the usual two-way implication, implying
an equivalence. If we have a statement of the form "if p then q", then its
contrapositive "if not q, then not p" will be used throughout without warning. In
de�nitions, the word "if" will refer to "i¤". The symbol "8", the inverted "A" in
"all" will mean "for all" and its equivalents whereas the symbol "9", the re�ected
"E" in "exists" will mean "there exists" and its equivalents. Familiarity with
the principle of induction and the concept of in�nity is assumed. The Axiom
of Choice will be used carelessly. The symbols Z, Q, R and C will denote,
respectively, the set of integers, rationals, real and complex numbers. Bars over
elements will denote conjugates.

De�nition 5 The intersection, union, di¤ erence and symmetric di¤ er-
ence of any two sets A and B is de�ned, respectively, as

A [B = fxjx 2 A and x 2 Bg

A \B = fxjx 2 A or x 2 Bg

A�B = fxjx 2 A and x =2 Bg

and
A�B = fxjx 2 Aorx 2 B but x =2 A \Bg

De�nition 6 Let A and B be two sets. B is called a subset of A if 8b 2 B,
b 2 A

This is written as B � A for proper subsets. The notation "�" is reserved
for improper subsets i.e. B � A or B = A.

Remark 7 Two sets are considered equal if they are subsets of each other.

We will denote the power set of a set X (the collection of all subsets of X)
with P(X), instead of 2X .

De�nition 8 Let A and B be two sets. Then, product set or Cartesian
product of A and B, written A � B, consists of all ordered pairs (a; b) where
a 2 A and b 2 B i.e. A�B = f(a; b) : a 2 A; b 2 Bg

Loosely, the Axiom of Choice states that the Cartesian product of non-empty
sets is non-empty. An equivalent to this statement is that one can always �nd
a function, called choice function, which "picks" elements from any given set.

Example 9 If A = f1; 2; 3g and B = f4; 5; 6g, then,

A�B = f(1; 4); (1; 5); (1; 6); (2; 4); (2; 5); (2; 6); (3; 4); (3; 5); (3; 6)g
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It makes sense to de�ne A � A = A2. Furthermore, (A�B) � C and
A� (B � C) are equal (see exercise).
It is clear that if A has n elements and B has m elements, then A� B has

nm elements.

Remark 10 An alternative way to de�ne an ordered pair (a; b) := ffag; fa; bgg
was proposed in 1921. This de�nition is called the Kuratowski de�nition and it
is now the standard de�nition of an ordered pair in set theory.

De�nition 11 Let A and B be two sets. Then, a binary relation R is a
subset of A�B.

For a 2 A, b 2 B, if a is related to b, then (a; b) 2 R. This is compactly
written as aRb. "a is not related to b" is denoted as a /Rb. A binary relation
is said to be de�ned on A if it is a subset of A2.

Example 12 For R = f(1; 1); (2; 2); (3; 3); :::g � N� N; aRb, a = b

De�nition 13 Let < be a binary relation. A strict weak ordering is a binary
relation < on a set S with the following propoerties:-

� < is transitive (a < b and b < c ) a < c)

� < is irre�exive (a < b ) b � a)

� < is asymmetric (a � a)

for a; b; c 2 S

Example 14 < is said to be an order on N, written as (N; <), if the elements of
N�N satisfy all the above properties in which the former member of the ordered
pair is less in magnitude than its latter member. This order is the natural order
on N.

Example 15 The relation"�", which is usually read as "contained in" for sets,
satis�es the properties for a strict weak order and is, therefore, a strict weak
order.

De�nition 16 Let � be a binary relation. A partial order is a binary relation �
over a set S if 8a; b; c 2 S

� a � a (� is re�exive)

� a � b and b � a ) a = b (� is antisymmetric)

� a � b and b � c ) a � c (� is transitive)

Example 17 For any set X, P(X) forms a partial order (is a partially ordered
set) under the partial order "�"
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A �nal property called totality is added to this list to de�ne � as a total
order on S. This mathematically says that a � b or b � a 8a; b 2 S. This
signi�es a comparison or a relation of all elements in S.
The following law, the Trichotomy law, can be proved:

Theorem 18 For any two elements a and b in a totally ordered set, exactly
one of the following is true:

� a < b

� b < a

� a = b

De�nition 19 Let (S;�) be a totally ordered set and A � S . A is said to be
bounded above if 9b 2 S such that a � b 8a 2 A

Example 20 f1; 2; 3; 4g � N is bounded above by 5 whereas f2; 3; 4; :::g is not
bounded above.

De�nition 21 Let (S;�) be a totally ordered set and A � S be a non-empty
subset such that A is bounded above. � 2 S is said to be the least upper bound,
or supremum of A if

� � is an upper bound of A

� � < � ) � is not an upper bound of A

In such a case, � = supA. Such a � is unique (proof?)

Example 22 For A = f1; 2; 3; 4g � Z, the set of upper bounds if f4; 5; 6; 7; :::g
and the set of lower bounds is f1; 0;�1;�2; :::g so that supA = 4 and inf A = 1

De�nition 23 Let R be a binary relation. An equivalence relations is an
order on a non-empty set S such that for a; b; c 2 S

� R is re�exive (aRa)

� R is symmetric (aRb implies bRa)

� R is transitive (aRb and bRc ) aRc)

The de�nition makes sense because elements of a set with an equivalence
relation generate a class within the set of "equal" elements.

Example 24 For a; b 2 Z, R is an equivalence relation if R � Z�Z such that
a� b is an integral multiple of 5:
In this case, a is said to be congruent to b modulo 5, written as a � b (mod 5)

or a �5 b. Thus, 1 �5 6 �5 11 and are "equal" because they all have a remainder
of 1 when divided by 5.
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De�nition 25 Let X be a non-empty set. The elements of K � P(X) are
called pairwise disjoint if 8A;B 2 K; either A = B or A \B = ?.

De�nition 26 A collection 
 of proper subsets of the set X is called a parti-
tion of X if

1. The elements of 
 are pairwise disjoint and

2.
[
A2


A = X

The second bullet points to the fact that the union is taken over the subsets
of X. In the exercise, you will be asked to show that this is a second way of
thinking of equal objects. The example below should make this clearer.

Example 27 For the set of rationals Q := Z� Z such that

x = (a; b) 2 Q, a = xb

We can get a partition, the elements of which are denoted by

[(s; t)] := f(a; b)ja; b 2 Z and bs = atg

when the relation (a; b) � (c; d) holds for ad = bc. Such a partition is also an
equivalence class (proof?).

A set X which can be partitioned under an equivalence class � is denoted by
X= �. For the set of rationals, we have Q= �= f[

�
1
2

�
;
�
2
3

�
;
�
3
4

�
; :::; [1] ; [2] ; :::g:

This is called the quotient set. This is an important concept since a set endowed
with a structure, for example a space or a group, if partitioned under �, will
inherit the structure. The partitioning can be thought of as a division of the
set, which suggests the use of the symbol = in a quotient set, and the name. As
the example illustrates, the quotient set may be thought of as a set with all the
"equivalent" points identi�ed and clumped together.

De�nition 28 Let X and Y be two sets. Then, a function f from X to Y is
an object such that every x 2 X is uniquely associated with an object f(x) 2 Y .

This can be made more rigorous by resorting to the de�nition of relations.
If f is a function, then (x; y) ; (x; z) 2 f implies y = z. Thus, we can have
f (x) = y since this "image" is unique. This is shortened from xRf (x) where
f (x) is a unique association of at most one x.
This is represented by f : X �! Y . The identity map will be represented

by 1̂ throughout the text. This is a map such that 1̂(x) = x. Confusion with
numerical one should not arise since the usage will be clear from context. The
notation is intentional in the sense that it acts as the identity for group of
functions (see next chapter).
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Example 29 A speci�c type of function called Boolean function used in Boolean
algebra may be de�ned as f : f0; 1g ! f0; 1g. For m 2 N, this de�nition may
be extended by using an m-tuple input formed by taking the Cartesian product
of f0; 1g m-times i.e. f0; 1gm

The set of values at which a function is de�ned is called its domain. The
domain of f , X, will be reserved by the symbol D (f) : The set of values that
the function can produce is called its range or image. Such a set Y is called the
codomain. The set f(X) � Y is called the image of X under f and will be
denoted by R (f) : Thus,

R (f) = f (X) = ff (x) : x 2 Xg

This image is a subset of the codomain Y . For B � Y , the set

f�1(B) := fx 2 X : f(x) 2 Bg

is called the inverse image of f and does not require for the function to have an
inverse (see exercise). The graph of f is de�ned as

G (f) = f(x; y) : x 2 X and y = f (x)g

If you recall your high school mathematics, you had to draw graphs of a
function on a piece of graph paper. Thus, this set is actually a more compact
way then giving out a pictorial representation of a particular function, hence
the name. Caution: both are used interchably in the course.
A function is therefore a many-to-one or sometimes one-to-one relation. f

is one-to-one if f(x) = f(y) implies x = y for x; y 2 X. A function is onto if
f(X) = Y . A function is well-de�ned if x = y implies f (x) = f (y) :
For f : X �! Y , if A � X and then the function g : A �! Y is the

restriction of f to A. This is denoted by g = f jA. Dually, f is called the
extension of g.
The term �map�is synonymous with function. However, every function is a

mapping but not every mapping (or map) is a function since a mapping might
also take one element and map it to many others. The notation � is reserved for
function composition. A function will be called bijective or as having a one-one
correspondence if it is one-to-one and onto.
Assuming that the underlying sets have some structure on them, we then use

the term support of a function suppf to mean the collection of all those values
of the domain which are non-zero. That is, suppf = fx 2 D (f) : f (x) 6= 0g

De�nition 30 A set is countable if it can be placed in a one-to-one corre-
spondence with a subset of the natural numbers, even N itself.

The indexing set In := f1; 2; 3; :::; ng will be used for convenience. In cases
where an in�nite number of items have to be indexed, the set I = N will be
used. This is particularly important for using countable sets.
One-to-one correspondence refers to a bijective function.
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The set of natural numbers (trivially), integers and rationals are countable
whereas the set of reals are not. For a beautiful proof of the usage of the concept,
see Cantor�s diagonal argument in any standard text book of Set Theory. In
notation, this correspondence is denoted by N � Z, N � Q. We shall make little
use of this, however.
Technically, a sequence is any function from the natural numbers to any

given set. So, if we have f(n) = n, we can have a sequence of natural numbers,
or an arithmetic sequence of unit di¤erence. Any such range is called the range
of the sequence. As seen, this range can be an integer, a real number, a natural
number, a complex number, a function or even a set. It is not yet meaningful to
talk about convergence of a sequence since we don�t have the idea of distance
between two points. This is explored in metric and norm spaces in detail in the
upcoming chapters. For now, the ideas of Calculus will su¢ ce i.e. a sequence
xn converges to a point x if lim

n�!1
xn = x: We will call a function continuous if

lim
x�!x0

f (x) = x0 or equivalently, lim
n�!1

f (xn) = x0 provided lim
n�!1

xn = x0, as

was probably expounded in your Real Analysis course. Of course there is more
rigour later on. We will also do some mathematics with series i.e. partial and
in�nite sums of elements of a sequence. One such particular example, called the
Basel problem, is listed below, since it is made use of in these notes (and it�s
beautiful)

Example 31
1P
n=1

1=n2 = �2=6

Since sinx = x� x3=3! + x5=5!� x7=7! + ::: we have

sinx

x
= 1� x2

3!
+
x4

5!
� x6

7!
+ :::

Now, the roots of this polynomial occur at �n� for n 2 N so that we can factor
this polynomial as follows:

sinx

x
=

�
1� x

�

��
1 +

x

�

��
1� x

2�

��
1 +

x

2�

�
:::

=

�
1� x2

�2

� 
1� x2

(2�)
2

! 
1� x2

(3�)
2

!
:::

Now, we can multiply these in�nite terms and get coe¢ cients in x0; x2; x4 and
so on. The coe¢ cient for x0 is only 1. The coe¢ cient for x2 is

� 1

�2

�
1

12
+
1

22
+
1

33
+ :::

�
Comparing this with �1=3!, we have

1P
n=1

1=n2 = �2=3!

We can move ahead and compare the coe¢ cients for x4 and relate this heavily
with the Reimann-Zeta function but this beyond our requirements.
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1.2 Ordinals and Cardinals

In informal use, a cardinal number is what is normally referred to as a counting
number. Technically, the name given to a size for the set is cardinality of a
set. Cardinality is de�ned by constructing a bijective map from the set under
observation to another well-known set, usually the natural numbers. Thus, the
cardinality of a �nite set X is always a natural number n if and only if there
exists a bijective mapping from the set X to a �nite subset f1; 2; :::; ng of the
natural numbers N. This is denoted by jXj = n.
A set X is countably in�nite if and only if there exists a bijective mapping

between X and the natural numbers. In fact, we can construct a bijective
mapping from N to Z and to Q so that jZj = jQj. This leads to interesting
paradoxes, which are well covered in the Hilbert�s Paradox of the Grand Hotel.
Galileo had come close to the idea but basing his intuition that the sum of the
whole is always less than the whole, rejected the fact that j2Nj = jNj. It was
Cantor who formalised the idea in his ground-breaking work of Set Theory in
1874�1884. He was the �rst to denote jNj = @0 (read aleph-nought).
Cardinals are a generalization of the natural numbers used to measure the

cardinality (size) of sets. Thus, 0,1 and 2 are all �nite cardinals whereas the �rst
in�nite cardinal number is @0. A fundamental theorem due to Georg Cantor
shows that it is possible for in�nite sets to have di¤erent cardinalities and in
particular the cardinality of the set of real numbers is greater than the cardi-
nality of the set of natural numbers. The next in�nite cardinal is @1 and so
on, ordered by the usual "order" (ordinal) numbers. A trans�nite sequence,
strengthened with regards to order by the Axiom of Choice, is as follows:
1; 2; 3; :::;@0;@1; :::
Note that in the above de�nition, only functions are needed without regard

to the nature of the elements of the set. In particular, the order of the elements
is immaterial.
A non-zero number can be used for two purposes: to describe the size of a

set, or to describe the position of an element in a sequence. For �nite sets and
sequences it is easy to see that these two notions coincide, since for every number
describing a position in a sequence we can construct a set which has exactly the
right size, e.g. 2 describes the position of b in the sequence a; b; c; d; ::: and we
can construct the set fa; bg which has 2 elements. Notice the place (order) of
b. Thus, in the �nite case, the ordinals and the cardinals are the same. When
dealing with in�nite sets it is essential to distinguish between the two � the
two notions are in fact di¤erent for in�nite sets. To motivate the de�nition of
ordinal numbers, we need another de�nition: The posets (P;�) and (P 0;�0) are
order isomorphic if there is a bijection f such that f(a) �0 f(b) if and only if
a � b. That is, both f and its inverse must be order preserving. In such a case,
the two sets are said to have the same order type. This also happens to be an
equivalence relationship. Thus, the set of integers and the set of even integers
have the same order type under the bijection f (n) = 2n but the set of integers
and the rationals are not because there does not exist any order preserving map
between them, even though both have the same cardinality. As remarked, in the
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�nite case, the distinction between the cardinals are ordinals is blurred: any two
�nite, well-ordered sets with the same cardinality are order-isomorphic, as can
be seen from the above example. We are now in a position to apply a notation:

ord(A;�) = 0 if and only if A = ? and ord(A;�) = n if and only if jAj = n
where A is a well-ordered set (the empty set is vacuously well-ordered). An
ordinal number or just ordinal is, therefore, the order type of a well-ordered
set. This is in line with the intuition of order. It is clear that ordinals are
di¤erent from cardinals and, therefore, serve as an extension of the natural
numbers. The least in�nite ordinal is !, which is identi�ed with the cardinal
number @0. That is, ord(N;�) = !: However in the trans�nite case, beyond
!, ordinals draw a �ner distinction than cardinals on account of their order
information. To each well-ordered set (A;�), an ordinal number is assigned
denoted by ord(A;�) and if � is an ordinal number, then there is a well-ordered
set (A;�) such that ord(A;�) = �. Also, ord(A;�) =ord(B;�) if and only if
A and B are order isomorphic. A given well-ordered set has only one cardinal
number but it is possible to obtain a di¤erent well-ordering on the same set and,
therefore, to yield a distinct ordinal number. Since order-type is an equivalence
relationship, the ordinal numbers are taken to be the canonical representatives
of their classes and so the order type of a well-ordered set is usually identi�ed
with the corresponding ordinal. Given a class of ordinals, one can identify the
�-th member of that class, i.e. one can index (count) them.

In summary, an order type categorizes totally ordered sets in the same way
that a cardinal number categorizes sets.
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1.3 Exercise

1. For any subsets A, B and C of a set X, prove the following:

(a) A [B = B [A
(b) A \B = B \A
(c) (A [B) [ C = A [ (B [ C)
(d) (A \B) \ C = A \ (B \ C)
(e) A [ (B \ C) = (A [B) \ (A [ C)
(f) A \ (B [ C) = (A \B) [ (A \ C)
(g) P(A) [ P(B) � P(A [B)
(h) P(A) \ P(B) = P(A \B)
(i) A�B = A \B{

(j) A � B , B{ � A{

(k) (A [B){ = A{ \B{

(l) (A \B){ = A{ [B{

(m) A [ C = C , A � C

(n) A \ C = A, A � C

2. For any set X, prove that P(X) is unique. Do this by showing that there
are two such classes and then show that they are the same by employing
set-theoretic arguments

3. For any sets A;B prove that A� B = B � A , B = A hence the use of
A�A = A2 is justi�ed.

4. If A;B and C are non-empty sets, prove that there exists a one-to-one
correspondence between

(a) A�B and B �A
(b) (A�B)� C and A� (B � C)
(c) (A�B)�C and the ordered triples (a; b; c) where a 2 A, b 2 B and

c 2 C

5. Prove that an equivalence relation yields a partition of a set X and con-
versely.

6. Show that the mapping f : X �! Y is bijective if and only if there exists
a mapping f : Y �! X such that g � f = f � g = 1

7. Let 
 be any indexing set. For f : X �! Y , A � X and B � Y , prove
the following: (remember, the following are sets, so you�ll have to use
set-theoretic arguments)
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(a) f(f�1(B)) � B:

(b) A � f�1(f(A))

(c) f(
[
i2


Ai) =
[
i2


f(Ai)

(d) f(
\
i2


Ai) �
\
i2


f(Ai)

(e) Equality holds in d if f is one-to-one

(f) f�1(Bc) =
�
f�1(B)

�c
(g) f�1(

[
i2


Bi) =
[
i2


f�1(Bi)

(h) f�1(
\
i2


Bi) =
\
i2


f�1(Bi)

8. For f : X �! Y and g : Y �! Z, show that

(a) f and g are one-to-one implies g � f is one-to-one
(b) f and g are onto implies g � f is onto
(c) g � f is one-to-one implies f is one-to-one
(d) g � f is onto implies g is onto

9. Show that f : X �! Y is one-to-one if and only if 9g : Y �! X such that
g � f = 1̂X

10. Show that f : X �! Y is onto if and only if 9g : Y �! X such that
f � g = 1̂Y

11. A permutation on any set X is a mapping & : X �! X. Let �(X) be a
set of permutations on X. Show that, for �; �;  2 �(X);

(a) � � � 2 �(X)
(b) � � (� � ) = (� � �) � 
(c) 91̂ 2 �(X) such that � � 1̂ = 1̂ � � = �

(d) 8� 2 �(X); 9��1 2 �(X) such that � � ��1 = ��1 � � = 1̂



Abstract Algebra

This chapter introduces most of the common notions of Algebra. If the reader
is already familiar with the topics, a casual reading will su¢ ce.

1.4 Groups

De�nition 32 Let S be a set. Then, a binary operation � on S is a function
such that � : S � S �! S.

This may be extended to include more than two elements but is beyond the
scope of these notes.

De�nition 33 Let G be a set. Then, G, together with a binary operation �,
written as (G; �), is a group if it satis�es the following axioms:-

� 8 a; b; c 2 G; (a � b) � c = a � (b � c) i.e. � is associative.

� 9 e 2 G such that a � e = a, 8 a 2 G

� 8 a 2 G, 9 b 2 G such that a � b = e

Remark 34 The third axiom is possible only when the uniqueness of e is jus-
ti�ed.

Proof. e1 � e2 = e1 = e2
(G; �) will be shortened to G, where possible. Also, the "�" symbol will be

skipped and juxtaposition will be used instead. An Abelian group is a group
in which � is commutative i.e. 8a; b 2 G; a � b = b � a.
Strictly speaking, it is not generally true that the existence of a right iden-

tity and right inverse implies the existence of a left identity and left inverse
in a binary relation unless the relation is associative. This explains why most
de�nitions of a group assume that both left and right inverse exist and the left
and right identities hold.

Example 35 One of the most familiar groups is the set of integers Z which
consists of the numbers..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ..., together with addition
+ : Z� Z �! Z where for a; b 2 G, +(a; b) = a + b: The following properties

xxi
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of integer addition serve as a model for the abstract group axioms given in the
de�nition below. For any two integers a and b, the sum a+ b is also an integer.
Thus, adding two integers never yields some other type of number, such as a
fraction. This property is known as closure under addition. For all integers a,b
and c, (a+ b)+ c = a+(b+ c). Expressed in words, adding a to b �rst, and then
adding the result to c gives the same �nal result as adding a to the sum of b and
c, a property known as associativity. If a is any integer, then 0+a = a+0 = a.
Zero is called the identity element of addition because adding it to any integer
returns the same integer. For every integer a, there is an integer b such that
a + b = b + a = 0. The integer b is called the inverse element of the integer a
and is denoted �a.

A group is said to be �nite if it has a �nite number of elements. Such a
group is said to be of �nite order. Otherwise, it is of �nite order.

Lemma 36 For a group G and for g1; g2; :::; gn 2 G,

g1g2:::gn =

nY
i=1

gi

This lemma might sound trivial but the reader is reminded that such an im-
pression comes from taking for granted that (g1g2) g3 = g1 (g2g3). For example,
(5� 3)� 2 6= 5� (3� 2). Of course, in a group, this has to be true. This the-
orem basically states that the brackets can be removed without any ambiguity.
It thus makes sense to de�ne gn = gg:::g n-times. Note that the above is valid
for a �nite n.
Proof. We use induction to show that for every n any meaningful product

g1g2:::gn =
nY
i=1

gi. Since the axioms of a group dictate that this is true for

n = 1; 2 and 3 we move on to consider a general n. Letm < n. Then, g1g2:::gn =
(g1g2:::gm) (gm+1gm+2:::gn)

=

 
mY
i=1

gi

! 
n�mY
i=1

gm+i

!

=

 
mY
i=1

gi

!  
n�m�1Y
i=1

gm+i

!
gn

!

=

  
mY
i=1

gi

! 
n�m�1Y
i=1

gm+i

!!
gn

=

 
n�1Y
i=1

gi

!
gn

=
nY
i=1

gi

De�nition 37 A subgroup H of a group (G; �) is a subset of G together with
all the axioms of the group G.
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In short, if we restrict the action of the binary operators with the axioms
mentioned to a set H, we get a subgroup. Needless to say, the binary operation
induced onH is that ofG. Mathematically, a subgroup is represented byH � G.
In analogy to set theory, the improper subgroups of a group are feg and G. The
identities and inverses of the group and subgroup should necessarily coincide
(proof?).

Example 38 Let n 2 Z: Let nZ = fnx j x 2 Zg. Then nZ is a subgroup
of Z; the group of integers under addition. nZ consist of all multiples of n:
First, we have to show that nZ is closed under addition. If nx, ny 2 nZ , then
nx + ny = n(x + y) 2 nZ. Therefore, nZ is closed under addition. Next, the
identity element of Z is 0. Now 0 = n � 0, so 0 2 nZ. Finally, suppose nx 2 Z.
The additive inverse of nx in Z is �nx , and �nx = n(�x) . This is n times
something, so it�s in nZ . Thus, nZ is closed under taking inverses. Therefore,
nZ is a subgroup of Z

In this case, the binary operation of G is carried over. Associateive law,
therefore, trivially follows. The identity for a subgroup H is the same as that
for the group G (proof?).
One way to check whether we have a bona�de subgroup is by checking that

it satis�es the axioms for a group in its own right. Another way is to use the
following:

Theorem 39 H is a subgroup of G () for any a; b 2 H, ab�1 2 H.

Proof. We should �rst prove that H is non-empty. If it is a subgroup, then
it will at least contain feg. Since H is a subgroup, if b 2 H, then b�1 2 H.
Also, if a; b�1 2 H, then ab�1 2 H. Conversely, suppose that for any a; b 2 H,
ab�1 2 H. First we prove associativity. For a; b; c 2 H, we know that a; b; c 2 G,
so associativity is trivially proved for any three elements in H. Since a; b 2 H
implies ab�1 2 H, we can reverse the roles of the elements and can conclude
that ba�1 2 H. Since we know that these two elements belong to the group
G, from this we have

�
ab�1

� �
ba�1

�
= aea�1 2 H. This step is valid since b

is an element of a group and we�ve already established associativity. Hence, we
have aea�1 = aa�1 = e 2 H. Finally, e; a 2 H implies ea�1 = a�1 2 H: Lastly,
a 2 H and b�1 2 H implies a

�
b�1
��1 2 H or that ab 2 H, establishing that H

is closed under the binary operation of G.

De�nition 40 For any subgroup H, K of G,

HK := fx 2 G j x = hk; h 2 H; k 2 Kg

Lemma 41 For any subgroup H, K of G, HK is a subgroup i¤ HK = KH

Theorem 42 For any subgroup H, HH = H

Proof. Since h = he 2 HH implies H � HH
On the other hand, HH 3 h1h2 = h 2 H
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1.4.1 Words on the cancellation law

In a group (G; �), the following are called the cancellation laws:
1. if ab = ac then b = c (left cancellation law)
2. if ba = ca then b = c (right cancellation law)

Proof. We only prove the left cancellation law. The second proof is similar.
Let ab = ac

=) a�1(ab) = a�1(ac)

=) (a�1a)b = (a�1a)c

=) eb = ec

=) b = c

This property makes sense because the inverse of a, if it exists, is being "mul-
tiplied" on both sides on the left. In simple cases of the integers, rationals, reals
and complex numbers, this is very clear and usually applied without the need
for justi�cation as a part of school training. Some situations can be constructed
in which there is no clear answer. For instance, if a� b = a� c, it does not at
all necessarily follow that b = c for vectors a;b; c with the usual cross product
de�nition.
The distinction between left and right cancellation is important in non-

commutative algebra. For instance, for matrices A;B;C, AB = CA does again
not necessarily mean that B = C, even if det (A) 6= 0
The cancellation law is one simple way to state divisibility and invertibility

combined. If inverses exists, then clearly, the cancellation property holds. In
fact, every group is therefore a semi-group (set with binary operation and asso-
ciative law) in which the cancellation law holds. In the �nite case, the existence
of inverses and the cancellation law coincide but in the in�nite case, this is not
so. Can you come up with an example?

1.4.2 Quotient Groups

Let R be an equivalence relation on a set X. Then, we can have for ourselves a
quotient set X=R. In a similar vein, we can have for ourselves a quotient group
G=R but for that, we need to be able to de�ne an equivalence relation in light
of the idea of a binary relation.

De�nition 43 Suppose H is a subgroup of a group G. A left (right) coset if
the set aH = fah j h 2 Hg (Ha).

Such a set is simply called a coset if aH = Ha. Note that this implies
ah1 = h2a where h1 is not necessarily equal to h2: It will be shown below that
H partitions G into right cosets. It also partitions G into left cosets, and in
general these partitions are distinct.

De�nition 44 Let G be a group, H be a subgroup of G. For a; b 2 G, we say
that a � bmodH i¤ ab�1 2 H.
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This relation is an equivalence relation.
Proof. Clearly, e = aa�1 2 H so that a � amodH

Second, ab�1 2 H implies ba�1 =
�
ab�1

��1 2 H so that a � bmodH
implies b � amodH
Finally, if a � bmodH and b � cmodH, then ab�1 2 H and bc�1 2 H so

that ab�1bc�1 = ac�1 2 H, satisfying transitivity.
Notice that a � bmodH is de�ned for the subgroup relation.
We can have that Ha = H iff a 2 H.

Proof. Ha = H
=) h1a = h2
=) a = h�11 h2 2 H
Conversely, if a 2 H
then ha 2 Ha for some h
In particular, for h = e, we have ea = a 2 Ha
Thus, H � Ha
For the other containment, we have ha 2 Ha
Take h = a, then a2 2 H
=) Ha � H

Theorem 45 Suppose H is a subgroup of a multiplicative group G. If a 2 G,
de�ne the right coset containing a to be Ha = fha : h 2 H g, then the following
hold:

1. If b 2 Ha, then Hb = Ha i.e. if b 2 H, then H(ba) = (Hb)a = Ha:

2. If Hc \Ha 6= ? then Hc = Ha.

3. Elements a and b belong to the same right coset i¤ab�1 2 H or if ba�1 2 H

4. The right cosets form a partition of G, i.e., each a in G belongs to one
and only one right coset.

Proof.

1. b 2 Ha
=) b = h1a

=) h2b = h2h1a

=) Hb = Ha

2. Let b 2 Hc \Ha
Since Hc \Ha 6= ?
=) b 2 Hc and b 2 Ha
=) Hb = Hc and Hb = Ha from 1.

=) Hc = Ha
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3. Since b 2 Ha therefore
Ha = Hb

=) b 2 Hb
=) ba�1 2 (Ha)a�1

=) ba�1 2 H(aa�1)
=) ba�1 2 (He)
=) ba�1 2 H
Conversly; ba�1 2 H
=) Hba�1 = H

=) Hba�1a = Ha

=) Hbe = Ha

=) Hb = Ha

Similarly we can prove that aH = bH , ab�1 2 H
Since H is a subgroup. Therefore if ba�1 2 H
(ba�1)�1 = (a�1)�1b�1 = ab�1 2 H

4. Suppose H is a subgroup of G. H itself is a right coset. If there is an
element a 2 G such that a =2 H; then Ha will be another distinct right
coset. Again if there is another element b 2 G such that b =2 H and so
b =2 Ha then Hb will be another distinct right coset. Proceeding in this
way we can get all distinct right cosets of H in G.

Then we shall have

G = H [Ha [Hb [Hc [ :::

where a; b; c; ::: are elements of G so chosen that all right cosets are distinct.
No right coset of H in G is empty since e 2 H. Any two right cosets of H in

G are either disjoint or identical. The union of all right cosets of H in G equal
to G. Therefore the union of all right cosets of H in G gives us a partition of
G. We can therefore have Ha = fx 2 G j a � xmodHg := [a] :

Lemma 46 Let Ha, Hb be any two right cosets. Then, f : Ha �! Hb such
that f (ha) = hb is one-to-one

Proof. f (h1a) = f (h2a)
=) h1b = h2b
=) h1 = h2
=) h1a = h2a
From any hb, we can construct ha = f (ha) b�1a, implying surjectivity.
Thus, in the �nite case, any two right cosets of the same subgroup H have

the same number of elements. In the commutative case, the left and right cosets
agree. Thus, we have proved the famous
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Theorem 47 (Lagrange�s theorem) The order of a subgroup divides the or-
der of the group

If the group itself is not commutative but if every left coset of subgroup N of
G is a right coset, then such a subgroup is called normal. This will be denoted
by N E G. If N is a proper subgroup, then N C G. For any group G, G and e
are normal subgroups.

Theorem 48 If H is a subgroup of a group G, then the following are equivalent.

1. If a 2 G, then aHa�1 = H Normal Test Condition (NTC)

2. If a 2 G, then aHa�1 � H

3. If a 2 G, then aH = Ha

4. Every right coset is a left coset, i.e., if a 2 G, 9 b 2 G with Ha = bH.

Corollary 49 Subgroups of an Abelian group are normal

Proof. For Abelian groups, Ha = aH
If H satis�es any of the four conditions above, then H is said to be a normal

subgroup of G:

Example 50 Let G be a group of all 2� 2 non-singular matrices. Let S be the
set of nonsingular matrices of the form�

a 0
0 a

�
Notice that a cannot be zero, for otherwise the determinant would be zero and
the inverse would not exist. Let�s �nd out if S can be a normal subgroup of G.
First we need to �nd out that S is a subgroup.

1. Closure: Let
�
a 0
0 a

�
2 S and

�
b 0
0 b

�
2 S�

a 0
0 a

� �
b 0
0 b

�
=

�
ab 0
0 ab

�
since a and b cannot be zero, ab 6= 0, and this

result is clearly in S:

2. Inverse: Let
�
a 0
0 a

�
2 S. Then,

�
a 0
0 a

��1
=

�
1
a 0
0 1

a

�
which is clearly in

S: This implies that S is a subgroup of G:

3. Normal Test Condition (NTC): Let
�
a 0
0 a

�
2 S; Let

�
x y
z w

�
be an

arbitrary nonsingular 2� 2 matrix. Let D = xw � zy be the determinant

of
�
x y
z w

�
and D 6= 0:Consider

�
x y
z w

� �
a 0
0 a

� �
x y
z w

��1
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=

�
xa ya
za wa

� �
W
D � y

D
� z
D

x
D

�
=

�
xaw�yaz

D
�xay+xay

D
zaw�zaw

D
�zay+wax

D

�
=

�
aD
D 0
�0 aD

D

�
=

�
a 0
0 a

�
2 S

=) S is a Normal subgroup.

Lemma 51 A subgroup of N in G is normal i¤ the product of two right cosets
of N in G is again a right coset of N in G.

Proof. ( =) )
NaNb = N (aN) b = NNab = Nab = Nc
((= )NaNb = Nc, then
n1an2b = n3ab where c = ab
=) an2 = n�11 n3abb

�1

=) an2 = na
=) aN = Na
Note that in this proof, it is inherently stated that the operation

NaNb = Nab (1.1)

is well-de�ned because the binary operation itself is well-de�ned.
Suppose N is a normal subgroup of G, and C and D are cosets. We wish

to de�ne a coset E which is the product of C and D. If c 2 C and d 2 D,
de�ne E to be the coset containing cd, i.e. E = N(cd). The coset E does not
depend upon the choice of c and d since there are other elements belonging to
the respective equivalence class. Such a collection forms a group, denoted by
G=N .
Proof. SupposeG is a group, N is a normal subgroup, andG=N is the collection
of all cosets. Then (Na)(Nb) = N(ab) is a well-de�ned multiplication (binary
operation) on G=N as shown above, and with this multiplication, G=N is a
group. Its identity is N and (Na)�1 = (Na�1). Multiplication of elements in
G = N is multiplication of subsets in G.
(Na)(Nb) = N(aN)b = N(Na)b = N(a � b).
Once multiplication is well de�ned, the group axioms are immediate.
In the left side of the equality of 1.1, we use the binary operation on the

set G=N whereas on the right side of the equality, we make use of the binary
operation on the set G.
If G is �nite, then Lagrange�s theorem tells us that jG=N j = jGj = jN j

Example 52 For example, consider the group with addition modulo 6:

G = Z6 = f0; 1; 2; 3; 4; 5g

Let N = f0; 3g. Then, G=N = faN j a 2 Gg
= fa+6 f0; 3g j a 2 f0; 1; 2; 3; 4; 5gg
= f0 +6 f0; 3g; 1 +6 f0; 3g; 2 +6 f0; 3g; 3 +6 f0; 3g; 4 +6 f0; 3g; 5 +6 f0; 3gg
= ff0; 3g ; f1; 4g ; f2; 5g ; f3; 0g ; f4; 1g ; f5; 2gg
= ff0; 3g; f1; 4g; f2; 5gg
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1.4.3 Homomorphisms of Groups

Homomorphisms are functions between groups that respect the group opera-
tions. It follows that they honor identities and inverses.

De�nition 53 If (G; �) and (G0; �0) are groups, a function f : G �! G0 is a
homomorphism if, for all a; b 2 G, f(a � b) = f(a) �0 f(b).

In the case G = G0; f is called an automorphism. The kernel of f is
de�ned by ker(f) = f�1(e0) = fa 2 G : f(a) = e0g. In other words, the kernel
is the set of solutions to the equation f(x) = e0. Let a function f : G �! H
be a homomorphism. If f is also a one-one correspondence, then f is called an
isomorphism. Two groups G and H are called isomorphic, denoted by G �= H,
if there exists an isomorphism between them. A group isomorphism is, therefore,
a function between two groups that sets up a one-to-one correspondence between
the elements of the groups in a way that respects the given group operations.
If there exists an isomorphism between two groups, then the groups are called
isomorphic. From the standpoint of group theory, isomorphic groups have the
same properties and need not be distinguished.
Lattices are isomorphic when orders between elements are preserved. Graphs

are isomorphic when they both have a similar structure, with vertices and nodes
being the same. Metric spaces are isomorphic when distance is preserved. Topo-
logical spaces are isomorphic when arbitrarily small distances are preserved be-
tween the two topological spaces. In short, two mathematical structures are
isomorphic or the same if their underlying structures are similar, with a disre-
gard to nature of the elements.
The de�nition introduced here is only to make the reader familiar with the

rigour of this central concept. Group isomorphism is hardly used afterwards. We
shall make use of the concept of isomorphism for metric spaces, vector spaces,
norm spaces and inner product spaces. However, since any vector space is also
a group in its own right, it is for the bene�t of the reader that the following be
read carefully enough.

Example 54 The constant map f : G �! G0 de�ned by f(a) = e0 is a homo-
morphism.

Example 55 If H is a subgroup of G, the inclusion i : H ,! G is a homomor-
phism.

Example 56 The function f : Z �! Z de�ned by f(t) = 2t is a homomor-
phism of additive groups, while the function de�ned by f(t) = t + 2 is not a
homomorphism.

Example 57 The function h : Z �! Rn f0g de�ned by h(t) = 2t is a homo-
morphism from an additive group to a multiplicative group.

Example 58 To show that (R;+) �= (R>0;�). let f(x) = ex. To prove that
this is an isomorphism, we should check tha f : R+ �! R�>0 is one-one
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correspondence and that f(x + y) = f(x)f(y) for all x; y 2 R. The �rst part
is trivial, since f(x) = ex is de�ned for all x 2 R and its inverse g(x) = lnx
is also de�ned for all x 2 R>0. The second part is also true, since f(x + y) =
ex+y = exey = f(x)f(y):

Example 59 The group Z of integers (with addition) is a subgroup of R, and
the factor group R=Z is isomorphic to the group S1 of complex numbers of
absolute value 1 (with multiplication): That is, R=Z �= S1. An isomorphism is
given by f(x+ Z) = e2�xi for every x in R

Example 60 Let G be an in�nite cyclic group. Then G is isomorphic to the
additive group of integers: G �= (Z;+). From in�nite cyclic group, we have
G = hai = fak : k 2 Zg. Let us de�ne ' : Z �! G such that '(k) = ak.
First we show that ' is a homomorphism. Let k; l 2 Z:. Then, '(k + l) =
ak+l = akal = '(k)'(l). Now we show that ' is a surjection. As G is cyclic,
every element of G is a power of a (for some a 2 G such that G = hai).
Thus, 8x 2 G : 9 k 2 Z : x = ak. By the de�nition of ', '(k) = ak = x.
Thus ' is surjective. As G is cyclic, every element of G is a power of a (for
some a 2 G such that G = hai). Thus, 8x 2 G : 9k 2 Z : x = ak. By the
de�nition of ', '(k) = ak = x: Thus � is surjective. Now we show that ' is an
injection. This follows directly from Powers of In�nite Order Element proved
above, where 8m;n 2 Z : m 6= n =) am 6= an Thus ' is an injective, surjective
homomorphism, thus G �= (Z;+) as required.

Suppose G and G0 are groups and f : G �! G is a homomorphism. Then,
the following properties can be proved and are left to the reader as an exercise.

1. f(e) = e0.

2. f(a�1) = f(a)�1 where the �rst inverse is in G, and the second is in G0.

3. ker f is a Normal subgroup.

4. f is injective , ker(f) = feg.

5. If H is a subgroup of G, f(H) is a subgroup of G0 In particular, image
(f) is a subgroup of G0.

6. If H 0 is a subgroup of G0, f�1(H 0) is a subgroup of G, Furthermore, if H 0

is normal in G0, then f�1(H 0) is normal in G..

7. The composition of homomorphisms is a homomorphism, i.e., if

h : G0 �! G"

is a homomorphism, then h � f : G �! G00 is a homomorphism.

8. If f : G �! G0 is a bijection, then the function f�1 : G0 �! G is an
isomorphism.
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Isomorphisms preserve all algebraic properties. For example, if f is an
isomorphism and H � G is a subset, then H is a subgroup of G i¤ f(H)
is a subgroup of G0: H is normal in G i¤ f(H) is normal in G0, G is cyclic
i¤ G0 is cyclic. Orders of elements are also preserved.

9. Suppose H is a normal subgroup of G. If H � ker f , then f 0 : G=H �! G0

de�ned by f 0(Ha) = f(a) is a well-de�ned homomorphism.

10. SupposeK is a group. ThenK is an in�nite cycle group i¤K is isomorphic
to the integers under addition, i.e., K �= Z. K is a cyclic group of order n
i¤K �= Zn.

1.5 Rings

De�nition 61 Let R 6= ? with two binary operations + : R � R �! R and
: : R�R �! R. Then, R is called a ring if

1. (R;+) is an Abelian group

2. : is associative

3. 8a; b; c 2 R, a: (b+ c) = a:b+ a:c and (a+ b) :c = a:c+ b:c

A subset S of R is called a subring if it obeys the above properties.

Lemma 62 Let R be a ring. Then

1. �� a = a

2. 0a = a0 = 0 for all a 2 R.

3. (�a)b = a(�b) = �(ab) for all a; b 2 R

4. (�a)(�b) = ab for all a; b 2 R.

5. if R has an identity 1, then the identity is unique and �a = (�1)a.

Proof. 1) Since �a+ a = 0, therefore a is the inverse of �a or a = �� a
2) 0a = (0 + 0) a = 0a+ 0a
=) 0a� 0a = 0a
=) 0 = 0a
3) 0 = 0b = (a� a) b = ab+ (�a) b. That is, � (ab) = (�a) b
Similary, 0 = a0 = a (b� b) = ab+ a (�b). That is, � (ab) = a (�b)
4)(�a) (�b) = a (�� b) = ab from 3 and 1
5) Assume there are two identities 1 and 10. Then, 1 = 110 = 10.
Put b = �1 in 4 to get (�a) (�� 1) = (�a) 1 which equals a (�1) by 3

Remark 63 R has identity element if there exists an element 1R 2 R such that
a:1R = 1R:a = a 8a 2 R. From now on, all rings will be assumed to have the
identity element whereas the + binary operation will be used
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Remark 64 2Z is a "ring" without the identity. Thus, a "ring" may not nec-
essarily have an identity. If R does not have the identity element, the jocular
term "rng" will be used.

Remark 65 Henceforth, the . will be dropped and a juxtaposition will be used
instead.

Remark 66 R itself is commutative if ab = ba 8a; b 2 R

Remark 67 (Warning) From now on, reference will not be given as to whether
or not a structure is commutative or not.

De�nition 68 An element a of a ring R is called a left zero divisor if there
exists a nonzero x such that ax = 0.

Similarly, for the right zero divisor. In commutative algebra, this distinction
is blurred.

Lemma 69 Let R be a ring and let  : R �! R such that  (x) = ax for some
a 2 R. Then, a is a zero divisor if and only if  is not injective.

Proof. (=)) suppose a is a zero divisor and  (x) is injective. Then,

 (x) =  (y)

or ax = ay implies x = y. That is, the cancellation laws hold, implying the
existence of the inverse of a, a�1. But if ax = 0, then we can apply a�1 on both
sides to get x = 0, a contradiction.
((=) Suppose  is not injective but that a is also not a zero divisor. Then,

 (x) =  (y) or ax = ay does not imply x 6= y. But if ax = ay, then ax�ay = 0
=) a (x� y) = 0. Since a is not a zero divisor, (x� y) = 0 from which we

have the contradiction that x = y

Corollary 70 Let R be a ring and let  : R �! R such that  (x) = ax for
some a 2 R. Then, a is a not a zero divisor if and only if  is injective.

Invertible elements will be called units. Note that it is strictly not true that
if an element is not a zero divisor, then it is necessarily a unit. In fact, it will
be seen later, a nonzero divisor has an inverse but only in a larger ring.

Lemma 71 Set of units of R, U (R) form a group under multiplication

Proof. Let a; b 2 U (R). Then, b�1 and a�1 exist. Since b�1 and a�1 are
members of the larger ring, therefore the product b�1a�1 exists. Hence,

ab
�
b�1a�1

�
= 1

implying that the inverse of ab exists or that ab 2 U (R). Associativity follows
from the structure of the ring. The multiplicative identity is the inverse of itself
and hence trivially a unit. Suppose that this is not true and that 1�11 = 1.
But then multiplying by 1�1 on both sides and we get 1�1 = 1 implying that
1 2 U (R). Finally, for any a 2 U (R), a�1 exists and that a =

�
a�1

��1
hence

a�1 2 U (R)
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De�nition 72 An element x of a ring R is called nilpotent if there exists
some positive integer n such that xn = 0. If there is a smallest positive integer
n such that n:a = 0 for all a 2 R, then such a positive integer is called the
characteristic of R.

This is denoted as charR = n. If there is no such positive integer, then R is
said to be of characteristic zero.

The matrix A =

24 0 1 0
0 0 1
0 0 0

35 is a nilpotent element of order 3. In the factor
ring Z=9Z, the equivalence class of 3 is nilpotent because 32 is congruent to 0
modulo 9.

Lemma 73 A nilpotent element a of a nonzero ring is always a two-sided zero
divisor. In particular, an idempotent element (a nilpotent element of order
n = 2) is always a two-sided zero divisor.
Proof. an = 0 =) aan�1 = 0 =) ax = 0 for x = an�1.
Similarly, xa = 0

De�nition 74 A commutative ring with no zero divisor is called an integral
domain.

Example 75 Zc for any c 2 Z� P is not an integral domain.

Example 76 (nZ;+; :)

An element of a ring that is not a zero divisor is called regular, or a non-
zero-divisor. A zero divisor that is nonzero is called a nonzero zero divisor or a
nontrivial zero divisor

Lemma 77 R is a division ring () U (R) = Rn f0g

De�nition 78 A Boolean ring B is a ring with identity in which x2 = x for
all x 2 B

Theorem 79 A Boolean ring B is commutative and has a characteristic of 2

Solution 80 2x = x+ x = (x+ x)
2
= 2x2 + 2x2 = 2x+ 2x

Hence, 2x = 0 8x 2 Bn f0g
Therefore, char(B) = 2
x+ y = (x+ y)

2
= x2 + y2 + xy + yx = x+ y + xy + yx

Hence, xy + yx = 0. Since 2xy = 0,
or, xy = xy =) xy + 0 = xy =) xy + xy + yx = xy =) 2xy + yx = xy

or xy = yx
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1.5.1 Ideals

De�nition 81 Let R be a ring and I be a non-empty subset of R. Then, I is
said to be a left ideal (right ideal) if I is a subgroup under + and if 8r 2 R
and 8x 2 I, rx 2 I (xr 2 I)

I is two-sided ideal if it is both left and right ideal. In such a case, we will
simply refer to the resulting structure as an ideal. In the commutative case, of
course this distinction is blurred. I 6= f0g is a proper ideal if it is a proper subset
of R, that is, I does not equal R. Therefore, to prove a subset I of a ring R is
an ideal, it is necessary to prove that I is nonempty, closed under subtraction
and closed under multiplication by all the elements of R. This naturally also
includes the elements of I.
Trivially, f0g and R are ideals. In the case of integers, 2Z is an ideal because

addition and subtraction of even numbers preserves evenness, and multiplying
an even number by any other integer results in another even number. Similarly,
the set of all integers divisible by a �xed integer n is an ideal denoted nZ. The
set of all n� n matrices whose last row is zero forms a right ideal in the ring of
all n�n matrices. It is not a left ideal. The set of all n�n matrices whose last
column is zero forms a left ideal but not a right ideal.

1.5.2 Quotient Ring

Similar to quotient groups, quotient rings can be constructed. One starts with
a ring R and a two-sided ideal I in R, and constructs a new ring, the quotient
ring R=I, whose elements are the cosets of I in R.

De�nition 82 Let R be a ring, I be an ideal of R. For a; b 2 I, we say that
a � bmod I if a� b 2 I.

This relation is an equivalence relation.
Proof. Clearly, 0 = a� a 2 I so that a � amod I
Second, a� b 2 I implies b� a = � (a� b) 2 I so that a � bmod I implies

b � amod I
Finally, if a � bmod I and b � cmod I, then a� b 2 I and b� c 2 I so that

a� b� (b� c) = a� c 2 I, satisfying transitivity.

Corollary 83 I + a = fx+ a j x 2 Ig = fx 2 R j a � xmod Ig = [a]

Proof. Let y 2 I + a. Then, y = y0 + a for some y0 2 I =) y0 = y � a 2 I
=) a � ymod I
=) y 2 [a]
Conversely, y 2 [a]
y � a 2 I
=) x = y � a 2 I
=) y = x+ a 2 I + a
This is called the residue class of a modulo I. Thus, any two such classes

I + a and I + b of R are identical or have no two elements in common.
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Lemma 84 Let I+a, I+b be any two modulo classes. Then, f : I+a �! I+b
such that f (r + a) = r + b is one-to-one

Proof. f (r1 + a) = f (r2 + a)
=) r1 + b = r2 + b
=) r1 = r2
=) r1 + a = r2 + a
From any r + b, we can construct r + a = f (r + a)� b+ a
Thus, in the �nite case, any two right residue classes of the same ideal I

have the same number of elements.
From hereon, we will assume that R is abelian.

De�nition 85 R=I := fr + I j r 2 Rg is called the quotient ring

Now we de�ne two operations for R=I, the addition and multiplication

� : R=I �R=I �! R=I

such that (r + I) � (s+ I) = rs+ I and

+ : R=I �R=I �! R=I

such that (r + I)+(s+ I) = (r + s)+ I. We now show that this is well-de�ned.
Since I is a commutative subgroup under addition, it is a normal subgroup

hence the need to justify the plus operation can be foregone. Let (r + I) +
(s+ I) = (r + s)+ I is well-de�ned, as was proved for normal subgroups above.
For multiplication, let (r1 + I; s1 + I) = (r2 + I; s2 + I). Then, r1 + I = r2 + I
and s1 + I = s2 + I. Thus, r1 2 r2 + I, r2 2 r1 + I, s2 2 s1 + I and s1 2 s2 + I

=) r1 � r2 2 I and s1 � s2 2 I. Let r1 � r2 = a and s1 � s2 = b. Then,
r1s1 = (a+ r2) (b+ s2) = r2s2 + bs2 + ab+ as2 2 r2s2 + I

=) r1s1 + I = r2s2 + I.
Another way to see this is as follows: If I + a = I + c and I + b = I + d,

what must be true about I so that we can be sure I + (ab) = I + (cd)? Using
the de�nition of cosets: If a� c; b� d 2 I, what must be true about I to assure
that ab � cd 2 I? We need to have the following element always end up in I:
ab � cd = ab � ad + ad � cd = a(b � d) + (a � c)d 2 I =) ab + I = cd + I.
Because b � d and a � c can be any elements of I (and either one may be 0),
and a, d can be any elements of R, the property required to assure that this
element is in I, and hence that this multiplication of cosets is well-de�ned, is
that, for all s in I and r in R, sr and rs are also in I. If this condition holds,
then we don�t need to assume separately that the product of two elements of I
is again in I:

1.6 Fields

De�nition 86 Let R be a ring. Then, R is called a divison ring or a skew
�eld if 8a; b 2 Rn f0g, 9b such that ab = ba = 1R
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In other words, a divison ring is a ring in which division is possible. The
set of rational numbers, real numbers, complex numbers and even the modulo
set (Zp;+; :) are division rings. The real quaterions (H;+; :) are formed in the
following way: start with a vector space over R (this could be the rationals,
too) with basis vectors 1, i; j; k. In other words, an element of H looks like
a1 + a2i + a3j + a4k. Products are determined by the relationships that i2 =
j2 = k2 = �1, ij = k, jk = i, and ki = j. Therefore, the product of two
elements is (a1 + a2i+ a3j + a4k) (b1 + b2i+ b3j + b4k)
= (a1b1 � a2b2 � a3b3 � a4b4) + (a1b2 + a2b1 + a3b4 � a4b3)i
+(a1b3 + a3b1 + a4b2 � a2b4)j + (a1b4 + a4b1 + a2b3 � a3b2)k.
Choosing a1 = 1, a2 = 0, a3 = 0,and a4 = 0, we have ourselves an identity.

It is not commutative since ij = k, but

ji = ji(j)(�j) = �j(ij)j = �jkj = �ij = �k

Elements have inverses, and the inverse of is

a1
a21 + a

2
2 + a

2
3 + a

2
4

� a2
a21 + a

2
2 + a

2
3 + a

2
4

i� a3
a21 + a

2
2 + a

2
3 + a

2
4

j� a3
a21 + a

2
2 + a

2
3 + a

2
4

k

Finally, there are no zero divisors since every non-zero element has an inverse.
Therefore, (H;+; :) is a division ring which is not commutative.
In summary, we have

De�nition 87 Let F be a set. F is �eld with two binary operations + and �,
denoted by (F;+; �), satisfying the following axioms:-

� (F;+) is an abelian group

� (F�; �) is also an abelian group.

� 8 a; b; c 2 F, the left distributive law a � (b+ c) = a � b+ a � c and the right
distributive law (b+ c) � a = b � a+ c � a hold

Here, F� = F�f0g. That is, inverse for the additive identity does not exist.

In simple words, 1=0 is unde�ned.
This de�nition should not be surprising, given what we just covered. This

de�nition needs to be remembered from here on.
x 2 Fn is a vector de�ned by an n-ordered pair for n 2 N. The same rules

as for the �eld are applied to each jth-tuple for 1 � j � n: This is one way of
obtaining for ourselves a vector space, as we will see in the next chapter.

Example 88 Rational Numbers: A simple example of a �eld is the �eld of
rational numbers, consisting of numbers which can be written as fractions a=b,
where a and b are integers, and b 6= 0. The additive inverse of such a fraction
is simply �a=b, and the multiplicative inverse (provided that a 6= 0) is b=a. For
any two rational numbers a=b; c=d�Q, the sum as well as the product of a=b
and c=d is again a rational number. Associativity holds for rational numbers as
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well as commutativity with respect to addition and multiplication. "0" is called
the additive identity and "1" is called the multiplicative identity for the set of
rational numbers, that is, 0+ a=b = a=b+0 = a=b and 1� a=b = a=b� 1 = a=b.
Distribution law of multiplication over addition also holds for the set of rational
numbers i.e. for all a=b, c=d and e=f 2 Q, we have

a

b
�
�
c

d
+
e

f

�
=
�a
b
� c
d

�
+

�
a

b
� e
f

�
Example 89 Such a reasoning can be extended to include the reals and the
complex numbers, use of which will be made extensively. The reader is invited
to show that these are indeed �elds.

Example 90 Fp forms a �eld for any prime p. This is because for any

p 6= a 2 Fp

and a 6= 0, we have gcd (a; p) = 1 =) a�1 exists. We�ve already seen that Fp
forms a group under addition.

Proof. gcd (a; p) = 1
=) 9m;n such that ma+ np = 1
=) ma � 1mod p
This number could very well be a prime power and the results still hold.
We can go on to show how polynomials are constructed but that divert us

from our main focus. Let us assume that the reader is familiar with polynomials
generally. A high school mathematical book will tell you that the complex
numbers are algebraiclly closed whereas the reals are not. That is, the solution
to the equation x2 + 1 = 0 exists in the complex numbers but not in the reals.
The complex numbers are, in some sense, stronger than the reals. However, there
is a great deal more of properties the reals enjoy which the complex numbers
do not.

De�nition 91 A �eld (F;+; �) together with a total order � on F is an ordered
�eld if the order satis�es

1. if a � b then a+ c � b+ c

2. if 0 � a and 0 � b then 0 � ab

It follows from these axioms that for every a, b, c, d in F:
Either �a � 0 � a or a � 0 � �a.
We are allowed to "add inequalities": If a � b and c � d, then a+ c � b+ d
We are also allowed to "multiply inequalities with positive elements": If

a � b and 0 � c, then ac � bc.

Example 92 The rational numbers (Z;Z+) form an ordered �eld, where Z+
denotes the familiar set of positive integers so do the reals but not the complex
numbers
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De�nition 93 An Archimedean ordered �eld is an ordered �eld F which
obeys the Archimedean Property: 8x 2 F, 9n 2 Z such that x � n

If F is an Archimedean ordered �eld we can de�ne a bracket function [x] to
be n�1 where n is the least n 2 Z such that x � n . The Archimedean Property
guarantees there is such an n . The least number principle for integers or the well
ordering principle guarantees there is a least such n: Examples of Archimedean
ordered �elds include the reals R and the rationals Q. The intuition needed to
be able to say that we can have a bracket function will come in handy when we
consider the modulus operation jxj on a real number.
In passing, we mention the following: an ordered �eld that does not satisfy

the Archimedean property is said to be non-Archimedean ordered �eld.
An element � such that 0 < � and � < r for every positive r 2 R is called an
in�nitesimal. By de�nition, an in�nitesimal number is not a real number but
belongs to an extension of R, �R, called the hyperreal numbers.

De�nition 94 Let F be a �eld. A subset K that is itself a �eld under the
operations of F is called a sub�eld of F. The �eld F is called an extension
�eld of K. If K 6= F , K is called a proper sub�eld of F.

To simplify notation and terminology, one says that F=K is a �eld extension
to signify that F is an extension �eld of K. Field extensions are the main object
of study in �eld theory. The general idea is to start with a base �eld and
construct in some manner a larger �eld that contains the base �eld and satis�es
additional properties. For instance, the set Q(

p
2) = fa+ b

p
2 j a; b 2 Qg is the

smallest extension of Q that includes every real solution to the equation x2 = 2.
Such an extension is called a quadratic extension. Given a �eld extension F=K,
the larger �eld F can be considered as a vector space over K. The elements of F
are the "vectors" and the elements of K are the "scalars", with vector addition
and scalar multiplication obtained from the corresponding �eld operations. The
dimension of this vector space is called the degree of the extension and is denoted
by [F : K]. In the above example, the dimension of the extension is 2. It is
common to construct an extension �eld of a given �eld K as a quotient ring
of the polynomial ring K[X] in order to "create" a root for a given polynomial
f(X). Suppose for instance thatK does not contain any element x with x2 = �1.
Then the polynomial X2+1 is irreducible over K or in K[X] i.e. the coe¢ cients
of X2 + 1 in K [X] cannot be factored into the product of two non-constant
polynomials with coe¢ cients in K. Consequently the ideal (X2 + 1) generated
by this polynomial is maximal, and F = K[X]=(X2 + 1) is an extension �eld of
K which contains an element whose square is �1 (namely the residue class of
X).
Given a �eld extension K � F, an element � 2 F is said to be algebraic

over K if � is the root of a polynomial with coe¢ cients in K. So
p
2 is algebraic

over Q since it is a root of x2 � 2, which is a polynomial over Q, but � isn�t
algebraic over Q. If a number is not algebraic, it is called transcendental.
R (�) = fa + b� j a; b 2 Rg will denote the structure generated by the real

numbers R and the element �. This is isomorphic to the Complex Numbers.
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Over general �elds F (�) can look very di¤erent from the complex numbers. For
example, for � = n

p
2 we have

Q (�) = fa0 + a1�+ a2�2 + � � �+ an�1�n�1 j ai 2 Qg

In the extension Q � R, the extension Q (�) is actually isomorphic to Q [X] :
The right picture to carry is that there exists n such that they have a nontrivial
linear combination that equals zero. If there exists no such n, then the set of
powers of � looks like the set of powers of x, and then we can see why F (�)
would be isomorphic to F [X].

De�nition 95 The conjugate elements of an algebraic element �, over a �eld
extension F=K, are the (other) roots of the minimal polynomial. A minimal
polynomial is de�ned relative to a �eld extension K=F and is an element of
the extension �eld K. The minimal polynomial of an element, if it exists, is a
member of F[x], the ring of polynomials in the variable x with coe¢ cients in
F. Two elements �, � of a �eld K, which is an extension �eld of a �eld F, are
called conjugate (over F) if they are both algebraic over F and have the same
minimal polynomial.

Two complex conjugates z = a + ib and z = a � ib (a,b 2 R,b 6= 0) are
conjugate in this more abstract meaning, since they are the roots of the monic
polynomial.

p(x) = x2 � 2ax+ a2 + b2

Moreover, the conjugate of a quaternion a = a1 + a2i+ a3j + a4k is de�ned
by

a = a1 � a2i� a3j � a4k

S = f� 2 K j � = �g the set of all symmetric elements of K. This is a sub-
ring.
Proof. Clearly, for �; � 2 S, we have �� � = ��� �� = �� �: Thus, �� � 2 S.
Similarly, for �� = ���� = �� provided the elements are commutative.

1.6.1 Homomorphism of Fields

De�nition 96 A ring homomorphism is a map f : R �! S between two
rings R and S such that

1. Addition is preserved: f(r1 + r2) = f(r1) + f(r2),

2. The zero element is mapped to zero: f(0R) = 0S, and

3. Multiplication is preserved: f(r1r2) = f(r1)f(r2),

where the operations on the left-hand side is in R and on the right-hand side
in S.
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Note that a homomorphism must preserve the additive inverse map because
f(g)+f(�g) = f(g�g) = f(0R) = 0S so�f(g) = f(�g). A ring homomorphism
for unit rings (i.e., rings with a multiplicative identity) satis�es the additional
property that one multiplicative identity is mapped to the other, i.e., f(1R) = 1S

A ring homomorphism which is a bijection (one-one and onto) is called a ring
isomorphism. If f �! S is such an isomorphism, we call the rings R and S
isomorphic and write R �= S. f : K �! K is a ring antiautomorphism,
if f (a+ b) = f (a) + f (b) and f (ab) = f (b) f (a) for all a; b 2 K. In the
commutative case, this is unnecessary. The antiautomorphism is involutary if
f2 (a) = a:

De�nition 97 Let (F;+; �) and (K;+0; �0) be two �elds. A �eld homomor-
phism is a function  : F �! K such that:

1.  (a+ b) =  (a) +0  (b) for all a; b 2 F

2.  (a � b) =  (a) �0  (b)

3.  (1) = 10;  (0) = 00

If  is injective and surjective, then we say that  is a �eld isomorphism.
If F = K, and  bijective, then  is a �eld automorphism. For example, com-
plex conjugation is a �eld automorphism of C, the complex numbers, because

0 = 0

1 = 1

a+ b = a+ b

ab = ab
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1.7 Exercise

1. Prove that the set 2�2 of matrices
�
a b
c d

�
forms a group under multi-

plication for ad 6= bc. (see appendix for a review of matrices).

2. Prove that �(X), the set of permutations on any set X, is a group.

3. Decide whether or not the following is a �eld. If it is, state a proof. If it
isn�t, state a counter-example:

(a) Q under usual multiplication and addition.
(b) Z under usual multiplication and addition.
(c) R� f0g under usual multiplication and addition.
(d) C under usual multiplication and addition.
(e) Set of continuous functions with point-wise addition and multiplica-

tion.

4. Let (G;+) be an Abelian group, A a nonempty set and M(A;G) the set
of all functions f : A �! G. De�ne + : M(S;G)�M(S;G) �! M(S;G)
as (f + g) : A �! G given by f(a) + g(a) 2 G for a 2 A. Prove that
M(A;G) is an Abelian group.

5. In a group (G; �) and for any a; b; c 2 G, prove that following

(a) the identity e and the inverse a�1 for any element a are both unique.

(b) a2 = a) a = e

(c) a2 = e) G is Abelian

(d) ab = ac ) b = c and ba = ca ) b = c (this is called the left and
right cancellation law)

(e)
�
a�1

��1
= a

(f) (ab)�1 = b�1a�1

(g) for unknown x; y 2 G, the solutions to the equations ax = b and
ya = b exists and is unique

6. Show that the intersection of countably �nite groups is a group but that
the union of countably �nite groups is not necessarily a group. (Hint: start
with two groups).

7. Prove that the existence of left inverse and left identity, as has been de�ned
for the de�nition of a group, is implied by the existence of a right inverse
and right identity and conversely.

8. Let � be an equivalence relation on a group G such that g1 � g2 and
h1 � h2 imply g1h1 � g2h2 for all gi; hi 2 G where i = 1; 2: Then, prove
that the set G= � of all equivalence classes of G under � is a group under
the binary operation de�ned by [g] [h] = [gh] :
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9. Prove that if G is an Abelian group, then so is G= � :

10. Let (G; �) be a group. Prove that if G is Abelian, then for g; h 2 G and
8n;m

(a) (gh)n = gnhn:

(b) gn+m = gngm

(c) (gm)n = gmn



Spaces

Basically, linear algebra has to do with the algebra of matrices, vectors and
the spaces formed by the collection of either. The idea of a three-dimensional
vector can be viewed as a member of R3. This is called the Euclidean space. The
addition, subtraction, scalar and cross multiplication of two vectors is generally
well-known and so is the algebra of matrices (a recollection is added in the
appendix). However, a mathematical treatment such as the one at our disposal
is far more general and has in store some great surprises. Vectors are not vectors
anymore in the usual sense yet sound very familiar. Their algebra, too, looks
downright distinct but a closer analysis reveals surprising commonalities. In
mathematics, the general idea is look for a common structure, formulate some
rules such structures obey and then see where else the structure lies. Of course,
intuition may play a role in the converse.
Anyway, vector spaces are exactly such spaces. It is to be remarked that

mathematically, a space is any set endowed with a particular structure. Hence,
vector spaces are just that �a set of vectors with an additional structure.

1.8 Vector Spaces

A group is a mathematical structure �a set that obeys certain axioms. If you
want to prove that a particular collection of elements, say integers, forms a
group under a certain binary operation, you prove that each and every element
of the set satis�es the axioms. Similarly, a vector space satis�es certain axioms
and to prove that a collection is a vector space, one follows the same route.
The axioms for a vector space concern with addition and scalar multiplication
of vectors, which can be intuitively understood. For a set of vectors V , by
addition we mean a rule for associating with each pair of objects u;v 2 V an
object u + v, called the sum of u and v; by scalar multiplication, we mean a
rule for associating with each scalar � and each object u 2 V an object �u,
called the scalar multiple of u by �. A scalar is an object that is a part of a
�eld F. We say that the vectors are scaled over the �eld F.
More rigorously,

De�nition 98 Let V be a non-empty set and F be a �eld. Then, V is a vector
space over F if for + : V � V �! V and � : F� V �! V

xliii
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1. u+ v 2V , as implied by the de�nition of the function +:

2. u+ v = v + u

3. u+ (v +w) = (u+ v) +w

4. There is an object 0 in V , called a zero vector for V , such that 0 + u =
u+ 0 = u for all u in V .

5. For each u in V , there is an object �u in V , called a negative of u, such
that u+ (�u) = (�u) + u = 0:

6. If � is any scalar and u is any object in V , then �u is in V , as implied by
the scalar multiplication function.

7. �(u+ v) = �u+ �v

8. (�+ �)u = �u+ �u

9. �(�u) = (��)(u)

10. 1u = u

for u;v;w 2V and �; �; 1 2 F.
If F = R or C, then we have a linear vector space.
The notation for +(u;v) = u+v is adopted to neglect annoying rigour but

has been mentioned only to emphasise that there�s no magic going on. Also,
note that the bold dot ("�") has been dropped in favour of the juxtaposition.
The �rst �ve axioms for the vector space may be compressed to say that V is

an Abelian group under vector addition. The �fth axiom may be derived from
the fact that � = �1 is also a scalar in F, following from the tenth axiom. One
can imagine that such concepts can readily be interpreted physically to be the
usual convention of "arrows" in physics. However, the above axiomatisation is
a vast generalisation of other spaces, as well. Functions and even sequences can
be interpreted as vectors in the above sense, as can be seen from the examples.

Exercise 99 Prove the following:

1. 0x = 0

2. �0 = 0

3. (�1)x = �x

Example 100 It is easy to see that R satis�es the above 10 axioms with scalars
belonging to R and vectors belonging to R as well. A vector over here is a "ray"
from the origin on the x-axis. We say that R is a vector space over itself. In
general, any �eld is a vector space over itself.
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Example 101 The set Rn is a vector space over the set of reals R under the
"usual" vector addition and scalar multiplication. For x = (x1; x2; :::; xn) and
y = (y1; y2; :::; yn) 2 Rn and for � 2 R; we can de�ne vector addition and scalar
multiplication as follows: + : Rn � Rn �! Rn such that

+(x;y) = x+ y

= (x1; x2; :::; xn) + (y1; y2; :::; yn)

= (x1 + y1; x2 + y2; :::; xn + yn)

and for : : R� Rn �! Rn such that

: (�;x) = �x = � (x1; x2; :::; xn) = (�x1; �x2; :::; �xn)

To begin proving that these operations de�ned in the manner above do indeed
form a vector space, the de�nitions will have to be applied directly. To see this,
clearly,

x+ y =(x1 + y1; x2 + y2; :::; xn + yn) 2 Rn

since xi+ yi 2 R 8i 2 In. Next, x+ y = y + x because addition is commutative
in the set of reals. Again, inverses will exist for any x = (x1; x2; :::; xn) since we
can construct �x = (�x1;�x2; :::;�xn) by resorting to the fact that every tuple,
being real, has an inverse. Furthermore, since 0 2 R, then 0 =(0; 0; :::; 0) 2 Rn
and is an additive identity. Therefore, Rn is an abelian group. Axiom 6 is
satis�ed by de�nition. For Axiom 7,

� (x+ y) = � (x1 + y1; x2 + y2; :::; xn + yn)

using the rule of addition. Since the element (xi + yi) is a member of the set of
reals, therefore (� (x1 + y1) ; � (x2 + y2) ; :::; � (xn + yn)) is justi�ed. Further-
more, R is a �eld, hence � (xi + yi) = �xi + �yi. Thus,

� (x1 + y1; x2 + y2; :::; xn + yn)

= (� (x1 + y1) ; � (x2 + y2) ; :::; � (xn + yn))

= (�x1 + �y1; �x2 + �y2; :::; �xn + �yn)

Now, since �xi and �yi are real numbers, we can split the tuple

(�x1 + �y1; �x2 + �y2; :::; �xn + �yn)

to get
(�x1; �x2; :::; �xn) + (�y1; �y2; :::; �yn)

which is, according to our de�nition of the scalar multiplication,

= � (x1; x2; :::; xn) + � (y1; y2; :::; yn)

Thus, we have justi�ed �(x + y) = �x + �y. For the 8th Axiom, we follow a
similar series of steps:
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(�+ �)x

= (�+ �) (x1; x2; :::; xn)

= ((�+ �)x1; (�+ �)x2; :::; (�+ �)xn)

= (�x1 + �x1; �x2 + �x2; :::; �xn + �xn)

= (�x1; �x2; :::; �xn) + (�x1; �x2; :::; �xn)

= � (x1; x2; :::; xn) + � (x1; x2; :::; xn)

= �x+ �x

The last two axioms can be similarly proved.

Notice how everything reduces to the pre-established axioms and the fact
that the base is a �eld and that the tuples form from the same �eld. This
painstaking mode of argument was only meant to serve as a motivation for how
a vector space ought to be proved: the axioms must hold!
To prove that Rn is a vector space over the �eld Q, we can similarly resort

to the fact that each tuple, that is, every real number when added or multiplied
by a rational number will yield another real number.
Equivalently, we can take n-tuple of the Complex plane C and generate for

ourselves a vector space. Try and prove it �rst for n = 1 and then proceed via
induction.

Example 102 The space C[a; b], the set of all continuous real valued functions
de�ned on the interval I = [a; b], forms a real vector space with the algebraic
operations de�ned in the usual way:
(x+ y)(t) = x(t) + y(t)
(�x)(t) = � (x (t)) for k 2 R

The use of x and y as function is rather intentional. We will prove that the
sum of continuous numbers is continuous. Since we�re using the real line, we�ll
use the �� � de�nition of continuity, de�ned in real analysis. To recall

Example 103 De�nition 104 For A;B � R, a function x : A �! B is
continuous at a point t0 if for every � > 0, there exists a � > 0 such that

jx(t)� x(t0)j < � whenever jt� t0j < �

A function is continuous if it is continuous at every point of its domain.
Now, if the function x is continuous, then for any point t0, we have

jx(t)� x(t0)j < �=2

whenever jt� t0j < �1 and if y is continuous at the same point, then we have

jy(t)� y(t0)j < �=2
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whenever jt� t0j < �2. Take � = min (�1; �2). Then,

j(x+ y) (t)� (x+ y) (t0)j = jx (t) + y(t)� x (t0)� y(t0)j
= j[x (t)� x (t0)] + [y(t)� y(t0)]j
� jx (t)� x (t0)j+ jy(t)� y(t0)j
< �=2 + �=2 = �:

The same can be said for the continuity of (�x)(t) if we let jx(t)� x(t0)j <
�= j�j. Hence the de�nitions for the addition and scalar multiplication are jus-
ti�ed.
It is now rather routine to prove that the space of continuous functions is

a vector space by showing that under the de�ned "vector" addition and scalar
multiplication, the remaining 8 axioms hold. In particular, one should prove that
the zero function is continuous; any additive inverse of a continuous function
is also continuous.

We will pause over here to recall a fact from real analysis: there is a �ne
distinction between continuity and uniform continuity. In the above de�nition,
given that the function is continuous, the � can depend on x so that for each
open interval in the range, we might be able to �nd an open interval in the
domain with di¤ering lengths (the length of an interval is de�ned as the dif-
ference between its endpoints so that j(a; b)j = j[a; b]j = b � a). However, if
the function under consideration is uniformly continuous, then this � will not
depend upon the domain so that the lenghts of each pre-image of open sets is
the same. Thus, continuity of a function is a local property since it depends
upon x whereas uniform continuity of a function is a global property which does
not depend upon x. Needless to say, if a function is uniformly continuous, then
it is continuous but the converse is not true in geneal.
Hopefully, you have just proved that this collection of functions forms a

vector space. In other words, functions can be viewed as vectors in a sense �a
single point in space. Such a space is also called the function space.
Wherever possible, vectors will be made bold. However, this will not be

strictly followed, especially when it comes to functions and sequences, since this
may be a cause of confusion with some pre-established notations. This should
in no way mean that functions are not vectors.

Example 105 The set of polynomials P [a; b] of order at most n over the set
[a; b] is also a vector space. Try to prove this yourself. Take the element

P (x) =
nX
i=0

�ix
i

and prove that this forms a vector space under the "ordinary" addition and
scalar multiplication.

Before moving on to another vey important example, let us pause to consider
the following: any vector space can be "constructed" from given vector spaces
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over a similar �eld. For instance, in the �rst example, we see that R is a
vector space over �eld R and Rn, too, is a vector space over R. Here, Rn =
R� R�:::�R. Generally, if we have vector spaces X1; X2; :::; Xn over a similar
�eld K, then

Lemma 106 X := f(x1; x2; :::; xn) j xi 2 Xig is a vector space

Proof sketch. De�ne (x1; x2; :::; xn) + (y1; y2; :::; yn) := (x1 + y1; :::; xn + yn)
and � (x1; x2; :::; xn) := (�x1; �x2; :::; �xn). This is natural because for each i-th
tuple, the addition makes sense because the underlying vector space Xi is closed
under addition and mulitplication.
It is now a routine matter to verify that the resulting space is indeed a vector

space.
Such an X is a vector space and is called the Cartesian product (see Set

Theory in preliminaries for details). Usually, when the context is clear, the word
Cartesian is dropped and just the words "product of spaces" is used. However,
this is not standard since there are other ways in which a product for a vector
space may be de�ned. The product space is denoted by X = X1�X2� :::�Xn

Before we move on to consider our next example, a de�nition is in order:

De�nition 107 The modulus of a real number x is a function de�ned such

that jxj =
�

x if x � 0
�x if x < 0

This modulus simply converts negative numbers to positive numbers and
lets positive numbers be positive numbers. In reality, it actually measures the
distance of a number from the zero point. In other words, the magnitude of the
one-dimensional ray formed on the real line is measured by this de�nition.
The above de�nition was meant to serve as a gentle introduction what the

modulus (actually, norm) is about. But enough with gentle introductions! Us-
ing this de�nition, the reader is invited to �ex his/her muscles by proving the
following:

Exercise 108 For any real a � 0; then jxj � a () �a � x � a

Exercise 109 jxj = 0 () x = 0

Exercise 110 jxyj = jxj jyj

Exercise 111 j�xj = jxj

Exercise 112
���xy ��� = jxj

jyj for jyj 6= 0

Exercise 113 jx� yj = jy � xj

Exercise 114
��x2�� = x2

Exercise 115 jxj =
p
x2
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Exercise 116 jx+ yj � jxj+ jyj

Exercise 117 jx� yj � jxj+ jyj

Exercise 118 jxj � jyj � jx� yj

Exercise 119 jjxj � jyjj � jx� yj

We will only prove the triangle inequality, since it will be made fair use of.
We start with � jsj � s � jsj and � jtj � t � jtj for s; t 2 R. Adding these
two together, we have � (jsj+ jtj) � s+ t � jsj+ jtj and this is exactly the �rst
statement for s+ t = x and jsj+ jtj = a.
Considering that we�ve proved Rn is a vector space, it is now time to move

ahead. Rn consists of n-tuples. To make these tuples in�nite essentially means
that we�re considering seqeunces �which are tuples, by the way, but in a more
magni�ed form. Now, a sequence may converge or diverge. This idea is made
more formal in metric which you can read ahead for yourself for a refresher.
You have probably passed a Calculus, Real Analysis and Topology course so I
will just go ahead with myself: convergence in Rn requires the usual Euclidean
metric. We can collect for ourself bounded sequences, convergent sequences or
even convergent series. This is where the natural generalisation of lp steps in
for p 2 [1;1]

Example 120 The space l2 (the space of two summable convergent and hence
bounded sequences) with the algebraic operations de�ned similar to those for
n-tuples in connection with sequences, that is, for �; & 2 l2 such that

1X
i=1

j�ij
2
<1

we have

� + & = (�1; �2; ::) + (&1; &2; :::) = (�1 + &1; �2 + &2; ::)

and
�� = (��1; ��2; ::)

forming a vector space.

Proof. It is easy to show that these operations are well-de�ned because for
any two equal sequences � = &, we have �� = �& and its companion addition.
However, we still won�t be done as being well-de�ned is no guarantee that �+ &

and �� 2l2 so we prove this �rst. Let
1X
i=1

j�ij
2
<1 and let � be a �nite scalar.

Then, if �� 62l2, we must have
1X
i=1

j��ij
2 �! 1 or

1X
i=1

j�j2 j�ij
2 �! 1 or j�j2
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1X
i=1

j�ij
2 �! 1. Now, clearly,

vuut 1X
i=1

j�ij
2
< 1 so that j�j2 �! 1 which is

a contradiction. For the �rst axiom, �rst we note that
1X
i=1

j�ij
2
;
1X
i=1

j&ij2 < 1

implies

vuut 1X
i=1

j�i + &ij
2 �

vuut 1X
i=1

j�ij
2
+

vuut 1X
i=1

j&ij2 <1

The inequality used over here is the Minkowski inequality (proved later) for
p = 2.
Now we can move ahead with the real axioms! Clearly, we can have � +

(& + �) = (� + &) + �, by resorting to the associativity of each ith element.
Next, the sequence 0 = (0; 0; 0; :::) converges and hence belongs to l2 so that

� + 0 = (�1; �2; ::) + (0; 0; :::)

= (�1 + 0; �2 + 0; ::)

= (�1; �2; ::)

= �

Furthermore,
1X
i=1

j�ij
2
=

1X
i=1

j��ij
2

so that for every �, we have ��. For commutativity, again, we resort to the fact
the base �eld is commutative so that

� + & = (�1 + &1; �2 + &2; ::)

= (&1 + �1; &2 + �2; ::)

= & + �

Now that additive operation forms an Abelian group, we can similarly prove
that � (� + &) = �� + �&, (�+ �) � = �� + ��; � (��) = (��) � and 1� = �
These are known as Hilbert sequence spaces. This should not to be confused

with the Hilbert space, which will be studied in the coming chapters. A remark,
however, has to be in order; this was the �rst example of a Hilbert space pre-
sented in history. From this, one can get a sense that Hilbert spaces are not just
about vectors in the usual sense and that their development had rather broad
applications in mind.
In order to avoid confusion, we will refer to the space in the example as

the sequence space. In this example, we have lp for p = 2. This p can range
between 1 � p < 1 and the power 2 in � j�ij

2
< 1 gets replaced accordingly.

For p = 1, the only requirement is that we have bounded sequences i.e. we
have j�ij � cx where cx is a real number which may depend on x but does not
depend on i. This is natural since the the bound will depend on the sequence
x but has to be valid for all i. In fact, we might even have a divergent series if
this constant depended on each i, giving us an unbounded sequence.
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The keen eye should have noted the idea of boundedness is entirely dependent
on how distance is de�ned. This topic can be put aside until normed spaces are
de�ned.
If the sequences for p = 2 are real-valued, then the space is a collection

of all convergent sequences on the real line, which forms a vector space, as
mentioned. Instead of real numbers �i, we can also have complex numbers
as the base elements of the sequences. Note that this should not be confused
with the Lebesgue Space Lp, which deals with functions with a p-norm. The
lp space is a special case of the Lp space, which is not covered in MTH327.
However, because of the knowledge of measure that is required, such spaces
are studied in MTH427. Lp spaces are de�ned using natural generalisations of
p-norms for �nite-dimensional vector spaces. They are named after the French
mathematician Henri Lebesgue (June 28, 1875 �July 26, 1941).
We will prove Hölder�s inequality on the real numbers. The inequality is

valid for p > 1 and a q such that 1
p +

1
q = 1. In a sense, p and q are inverses or

conjugates of each other. These are called conjugate exponents. For instance,
p = q = 2. 1 and 1 are also regarded as conjugate exponents.

Theorem 121 For convergent (why?) real sequences (xi) and (yi)

1X
i=1

jxiyij �
 1X
i=1

jxijp
!1=p 1X

i=1

jyijq
!1=q

Proof. From 1
p +

1
q = 1, we have

p+q
pq = 1

pq � p� q � 1 = 1
p(q � 1)� (q � 1) = 0 or (p� 1) (q � 1) = 1
Thus,

1

p� 1 = q � 1

so that from a function u = tp�1, we can have u1=(p�1) = t or t = uq�1. Now
let a; b 2 R for a; b > 0. Then, we can think of ab as an area of a rectangle with
sides a and b.
Let f(t) = tp�1. Then,

ab �
aZ
0

f (t) dt+

bZ
0

f�1 (t) dt

=

aZ
0

tp�1dt+

bZ
0

tq�1dt

=
ap

p
+
bq

q

Assume that we have the sequence (�i) and (�i) such that
1X
i=1

j�ij
p
=

1X
i=1

j�ij
q
= 1
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Set a = j�ij and b = j�ij. Then, we have the inequality

j�ij j�ij �
j�ij

p

p
+
j�ij

q

q

Summing such i objects, we get the inequality

1X
i=1

j�ij j�ij �
1X
i=1

j�ij
p

p
+

1X
i=1

j�ij
q

q

from which we have

1X
i=1

j�ij j�ij =
1X
i=1

j�i�ij �
1

p
+
1

q
= 1 (1.2)

Now, let

�i =
xi

(� jxijp)
1=p

and
�i =

yi

(� jyijq)
1=q

Then,

�pi =
xpi

(� jxijp)

and

�qi =
yqi

(� jyijq)

which implies

j�ij
p
=

jxijp

(� jxijp)

and

j�ij
q
=

jyijq

(� jyijq)

which, on summing the i index, will yield

1X
i=1

j�ij
p
=

� jxijp

(� jxijp)
and

1X
i=1

j�ij
q
=

� jyijq

(� jyijq)

both of which equal 1. Hence,

�i =
xi

(� jxijp)
1=p

and �i =
yi

(� jyijq)
1=q
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is a valid substitution. Multiplying these two and placing in the equality (1:2),
we get

1X
i=1

����� xi

(� jxijp)
1=p

yi

(� jyijq)
1=q

����� � 1
1X
i=1

jxiyij �
 1X
i=1

jxijp
!1=p 1X

i=1

jyijq
!1=q

This proof is valid only for lp spaces and not norm spaces in general.

Exercise 122 Show that the geometric mean of two positive numbers does not
exceed their arithmetic mean.

Continuing with the real sequences, for p = 2 , we have a special name for
the Hölder inequality: the Cauchy-Schwarz inequality

1X
i=1

jxiyij �
 1X
i=1

jxij2
!1=2 1X

i=1

jyij2
!1=2

Equality holds if x and y are scalars of each other.
Idea. Trivial for zero vectors. Take non-zero vectors x; y such that

x = (x1; x2; :::; xn; :::) = � (y1; y2; :::; yn; :::) = �y

Then,

=)
 1X
i=1

jxiyij
!2

=)
 1X
i=1

j�j jyiyij
!2

=

 1X
i=1

j�j jyij2
!2

= �2

 1X
i=1

jyij2
!2

= �2

 1X
i=1

jyij2
!0@ 1X

j=1

jyj j2
1A

=

 1X
i=1

j�yij2
!0@ 1X

j=1

jyj j2
1A

=

 1X
i=1

jxij2
!0@ 1X

j=1

jyj j2
1A

We will now prove the Minkowski Inequality for the same conditions as the
Hölder inequality. Speci�cally, for p � 1

Theorem 123

 1X
i=1

jxi + yijp
!1=p

�
 1X
i=1

jxijp
!1=p

+

 1X
i=1

jyijq
!1=q

Proof. For p = 1, we can directly apply the triangle inequality. For p > 1
jxi + yijp = jxi + yij jxi + yijp�1 � (jxij+ jyij) jxi + yijp�1
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Summing over i,

1X
i=1

jxi + yijp �
1X
i=1

jxij jxi + yijp�1 +
1X
i=1

jyij jxi + yijp�1

From the Hölder inequality, we have

1X
i=1

jxij jxi + yijp�1 �
 1X
i=1

jxijp
!1=p 1X

i=1

jxi + yij(p�1)q
!1=q

=

 1X
i=1

jxijp
!p�1 1X

i=1

jxi + yijp
!1=q

and

1X
i=1

jyij jxi + yijp�1 �
 1X
i=1

jyijp
!1=p 1X

i=1

jxi + yijp
!1=q

because pq = p+ q
Hence we have
1X
i=1

jxi + yijp �

0@ 1X
i=1

jxijp
!1=p

+

 1X
i=1

jyijp
!1=p1A 1X

i=1

jxi + yijp
!1=q

=)
 1X
i=1

jxi + yijp
!1�1=q

�
 1X
i=1

jxijp
!1=p

+

 1X
i=1

jyijp
!1=p

=)
 1X
i=1

jxi + yijp
!1=p

�
 1X
i=1

jxijp
!1=p

+

 1X
i=1

jyijp
!1=p

Now that you have these inequalities at your disposal, prove that lp is a
metric space

1.9 Normed Spaces

The modulus operation for a real number basically converts a negative number
into a positive one and lets the positive ones be. If we think of the real number
line as one-dimensional arrows eminating from zero, we can interpret the mod-
ulus as a function that tells how far the real number is from zero. Of course
there is no reason to have a magnitude function (the modulus) for real numbers
only. We can move ahead and generalise it for other vectors as well (strictly,
elements of a vector space).

De�nition 124 Let N be a linear space over a �eld F, where F = R or C. A
norm on N is a real-valued function k:k : N �! [0;1) such that
N1: kxk � 0 for all x 2 N and kxk = 0 if and only if x = 0
N2: k�xk = j�j kxk for all � 2 F, x 2 N
N3: kx+ yk � kxk+ kyk for arbitrary x;y 2 N



1.9. NORMED SPACES lv

Imagine that these de�nitions apply to two dimensional vectors. Then, jus-
tify to yourself that they apply to three dimensional vectors as well. There�s
no reason to stop there and we can continue with n-dimensional spaces, as well
(don�t worry, the example done below covers just that). Moving on, as can
be sensed, this is a generalisation of the concept of "measure" of a vector or
its length. A linear vector space together with a norm de�ned on it is called
a normed space, denoted by (N; k:k). Since the use of the extra brackets is
tedious, we will often shorten it to just the name of the set. Bear in mind that
a di¤erent norm on the same set does not make the same normed space.
There is absolutely no reason why we should restrict ourselves to two �elds

but is only because it makes matter a little easier to handle. We also have the
added advantage of completeness in both and that of order in the former. We
could have very well made use of the �eld of rational numbers, which may prove
to be easy but because of the absence of completeness, we will not be covering
this more general case. The imagination dries when the quaternions or even the
�eld of functions are used as scalars.
The �rst part of N1 is the positivity property or positive de�niteness, N2

is called the Absolute Homogenity Axiom whereas condition N3 is called the
Triangle Inequality or the Subadditive property. The second part of N1 ensures
that any two given vectors are two separate points.
The condition on N1 can be shortened to kxk = 0 if and only if x = 0

Proof. kxk � 2 kxk =) kxk � 0
It is only included for emphasis.

Exercise 125 Show that jkyk � kxkj < ky � xk for any vectors x;y in any
norm space N .

The �rst intuitive example of the magnitude of two vectors will serve as a
motivation for the de�nition.

Example 126 Let R2 be the Euclidean space. The length of a vector, under-
stood to be derived from the Pythagorean theorem, is kxk =

q
(x1)

2
+ (x2)

2.
Prove that this is indeed a normed space. We will prove the more general norm

kxk =
q
(x1)

2
+ (x2)

2
+ :::+ (xn)

2

for the space Rn. Clearly, this norm is positive since we�re dealing with square

roots. The only way
q
(x1)

2
+ (x2)

2
+ :::+ (xn)

2 or kxk could be zero is when
x1 = x2 = ::: = xn = 0. This in turn implies that x = (0; 0; :::; 0) or x = 0. To
prove N2, we have

k�xk =
q
(�x1)

2
+ (�x2)

2
+ :::+ (�xn)

2
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since �x = (�x1; �x2; :::; �xn). We then have

q
(�x1)

2
+ (�x2)

2
+ ::: (�xn)

2
=

r
�2
�
(x1)

2
+ (x2)

2
+ ::: (xn)

2
�

=
p
�2
r�

(x1)
2
+ (x2)

2
+ ::: (xn)

2
�

= j�j
r�

(x1)
2
+ (x2)

2
+ ::: (xn)

2
�

= j�j kxk

N3 follows from Minkowski�s inequality.

The discussion of n = 1 in Rn as a de�nition of the modulus jxj =
p
x2 can

now tell us that the real numbers are vectors in one dimension on the real line.
For n = 2, do it yourself. For x= (x1; x2; :::; xn); kxk =

�
x21 + x

2
2 + :::+ x

2
n

�1=2
is the usual Euclidean norm satisfying the above axioms.

This is further generalised to the p-norm kxkp = (jx1j
p
+ jx2jp + :::+ jxnjp)

1=p.
For p = 1, the norm is called Manhattan distance, or taxicab distance because
distance is de�ned in terms of �blocks�. For p = 1, the norm changes to
kxk1 = maxfjx1j ; jx2j ; :::; jxnjg. This is also known as the uniform norm.

Note that the norm de�ned as above, the Euclidean norm, is not the only
norm on Rn. For instance,

Example 127 We can de�ne k:k : Rn �! [0;1) such that for x 2 Rn,

kxk =
nX
i=1

jxij

Then, clearly xi � 0 and

kxk = 0

()
nX
i=1

jxij = 0

() xi = 08i
() x = 0
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Furthermore,

k�xk =
nX
i=1

j�xij

=
nX
i=1

j�j jxij

= j�j
nX
i=1

jxij

= j�j kxk

N3 follows by inductively applying the triangle inequality for real numbers. That
is,

jx1 + x2 + :::+ xnj
� jx1j+ jx2 + :::+ xnj

...

� jx1j+ jx2j+ :::+ jxnj

Hence, we have

kx+ yk =
nX
i=1

jxi + yij

�
nX
i=1

jxij+
nX
i=1

jyij

= kxk+ kyk

Other norms on the same set yield di¤erent norm spaces, as discussed in the
lectures. Rephrasing the lectures, two di¤erent norms on the same set do not
necessarily generate the same norm space. The norms are de�ned according to
di¤erent uses and priorities.

Exercise 128 Show that

kzk =
p
jz1j+ jz2j+ :::+ jznj

for (z1; z2; :::; zn) 2 Cn forms a norm and therefore, (Cn; k:k) a normed space.

Exercise 129 The norm of lp was hinted at in the example for vector spaces;
for any sequence x 2 lp, we have

kxk =
 1X
i=1

j�ij
p

!1=p
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for 1 � p < 1. The proof that this de�nition satis�es the axioms for a norm,
making it a bona �de normed space, follows a similar pattern as that for Rn.
Here, one can use the fact that j��ij

p
= j�jp j�ij

p, thanks to the de�nition of
the modulus, given that � is a real number. The proof of N3 is the proof of the
Minkowski inequality.

Example 130 The de�nition for p = 1 can be recollected from the former
material and can be proved by the reader.

Example 131 C[a; b], the space of continuous functions in the interval [a; b]
for a < b is a normed space under the norm such that for any x(t) 2 C[a; b], we
have

kx(t)k = max
t2[a;b]

jx(t)j

N1 holds clearly since (a) the modulus is always positive and (b) if the maximum
value of a non-negative quantity is 0, then that quantity is itself 0. That is,

max
t2[a;b]

jx(t)j = 0 () x(t) = 0(t)

where 0(t) = 0 8t. Next, the scalar � does not range over t, hence

max
t2[a;b]

j(�x)(t)j = max
t2[a;b]

j�x(t)j = j�j max
t2[a;b]

jx(t)j

proving N2. N3 follows by the use of the triangle inequality of real numbers.

We can also de�ne a norm on C[a; b] such that

kxk = kx(t)k =
bZ
a

jx(t)j dt

The reader is invited to prove that this is normed space.
The concept of a norm is important because length of a vector, distance be-

tween two vectors and hence the idea of convergence can be de�ned accordingly.
Needless to say, the idea of convergence is essential in almost all areas of mathe-
matics. Also, based on the de�nition of the norm and the vectors, convergence,
magnitude and distance can then be decided for, as we shall see.
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1.10 Metric Spaces

De�nition 132 Let X be any non-empty subset. A metric de�ned on X is a
function d : X �X �! [0;1) such that

� D1 d(x; y) � 0

� D2 d(x; y) = 0 () x = y

� D3 d(x; y) = d(y; x)

� D4 d(x; y) � d(x; z) + d(z; y)

for x; y; z 2 X. A metric space is a pair (X; d) where X is a set and d is
a metric on X. Metric generalises the concept of distance between two points.
A natural question that should arise is the following: how is the metric and a
norm related? In a sense, the distance between two vectors can also be decided
using the metric function. This is can be observed as follows: the di¤erence
between two vectors yields a third vector, which connects the tips of the two.
The length of this vector is the distance between the tips of the vectors, which
is what vectors are. Mathematically, d (x;y) = kx� yk. But we are getting
ahead of ourselves! For now, here are a few examples of metric spaces.

Example 133 A trivial metric which can be de�ned on any set is the discrete
metric d(x; y) = 1 for x 6= y and 0 otherwise. d(x; y) � 0;

d(x; y) = 0 () x = y

and d(x; y) = d(y; x) are satis�ed by de�nition. d(x; y) � d(x; z) + d(z; y) can
be veri�ed exhaustively by considering cases x 6= y, x = y, x 6= z and x = z.

Example 134 On the real line R, we can de�ne the usual metric d(x; y) =
jx� yj (aha!). This can be generalised for the Euclidean plane Rn with metric

d(x;y) =

q
(x1 � y1)2 + (x2 � y2)2 + :::+ (xn � yn)2

lix
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For n = 1, we can get
q
(x1 � y1)2 = jx� yj , which should�ve been proved by

the student in the exercise in the previous topic. For n = 2, we have the familiar
Pythagorean Theorem in plane. Note that the metric d is also the Pythagorean
Theorem in n-dimension. Dimensionality will be rigorously de�ned later. For
now, we�ll make do with the normal understanding of the word.

Example 135 Another metric de�nable on the same set is

d(x;y) =
nX
i=1

jxi � yij

This is called the taxicab or Manhattan metric.

This example illustrates the important fact that from a given set with more
than one element, we can obtain various metric spaces by choosing di¤erent
metrics, just like the normed space. The reader is invited to prove that both
are certi�ed metrics by satisfying the axioms �rst and then by induction.

Example 136 A metric similar to the usual metric can also be de�ned for the
complex plane C. Try to recall the de�nition of the modulus jzj =

p
x2 + y2 for

z = x+ iy and then derive a metric which can be generalised for Cn

Example 137 The sequence space lp for 1 � p < 1 forms a metric space
under the metric

d(x; y) =

 1X
i=1

j�i � &ij
p

!1=p
Example 138 As a set l1 we take the set of all bounded sequences of complex
(or real) numbers; that is, every element x of l1 is a complex (resp. real)
sequence x = (�1; �2; :::), brie�y x = (�i). If we have x = (�i) and y = (&i), we
can have the metric de�ned by d(x; y) = supA where A = f�i j �i = j�i � &ijg.
This can be compactly written as

sup
i2N

j�i � &ij

The supremum exists since the set is bounded (why?) and is unique. To prove
that this is a metric is easy: D1, D2 and D3 can be easily satis�ed. For
D4, we can construct the sets f�i j �i = j�i � &ijg, f�i j �i = j�i � �ijg and
fi j i = j�i � &ijg for x = (�i), y = (&i) and z = (�i) but before that, we
need j�i � &ij = j�i � �i + �i � &ij � j�i � �ij+ j�i � &ij 8i which we can denote
with �i, �i and i respectively. Since �i � �i + i is valid 8i, we can have
sup f�ig � sup f�ig+ sup fig or d(x; y) � d(y; z) + d(z; x):

Example 139 What about sequences that are unbounded? We can also have a
metric on the space s of all bounded and unbounded sequences de�ned as

d(x;y) =

1X
i=1

1

2i
j�i � &ij

1 + j�i � &ij
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for x = (�i) and y = (&i). Proving D1 to D3 is easy. For D4, let z = (�i) such
that

j�i � &ij � j�i � �ij+ j�i � &ij

=) 1

1 + j�i � �ij
+

1

1 + j�i � &ij :

� 1

2 + j�i � &ij

� 1

1 + j�i � &ij

Note that

d(x; y) =

1X
i=1

1

2i
j�i � &ij

1 + j�i � &ij

=

1X
i=1

1

2i
�1 + 1 + j�i � &ij
1 + j�i � &ij

=

1X
i=1

1

2i

�
1� 1

1 + j�i � &ij

�

=
1X
i=1

1

2i
�

1X
i=1

1

2i
1

1 + j�i � &ij

= 1�
1X
i=1

1

2i
1

1 + j�i � &ij

Since we have 1
2i

1
1+j�i��ij

+ 1
2i

1
1+j�i�&ij:

� 1
2i

1
1+j�i�&ij

, we can equivalently have

1�
1X
i=1

1

2i
1

1 + j�i � �ij
+ 1�

1X
i=1

1

2i
1

1 + j�i � &ij :

� 1�
1X
i=1

1

2i
1

1 + j�i � &ij

which is what is required.

Example 140 For C[a; b], we have a bona �de metric space under the metric
d(x; y) = max

t2[a;b]
jx (t)� y (t)j, which the reader is required to prove.

In real analysis, you might have proved that every bounded function has a
supremum using the fact that every function which is bounded above will have
a least upper bound. You should have also noticed, while trying to prove the
above example, that we have a maximum over here, instead of the supremum.
This is because not every function has a supremum but it will have a maximum.
This leads us to



lxii SET TOPOLOGY

Example 141 The space B[a; b] of real, bounded functions. By de�nition, each
element x(t) 2 B[a; b] is a function de�ned and bounded on a given set [a; b] and
the metric is de�ned by

d(x; y) = sup
t2[a;b]

jx (t)� y (t)j

Now,

d(x; y) = 0

() sup
t2[a;b]

jx (t)� y (t)j = 0

() jx (t)� y (t)j = 08t 2 [a; b]

since if the supremum of non-negative numbers zero, then all the numbers are
themselves zero. Then, we have x (t) = y (t) 8t 2 [a; b]. Hence, x = y. Second,
the supremum of non-negative numbers is non-negative, which the reader is
required to prove rigorously. For D3,

d(x; y) = sup
t2[a;b]

jx (t)� y (t)j

= sup
t2[a;b]

j� (x (t)� y (t))j

= sup
t2[a;b]

j�x (t) + y (t)j

= sup
t2[a;b]

jy (t)� x (t)j

= d (y; x)

Finally,

sup
t2[a;b]

jx (t)� y (t)j � sup
t2[a;b]

jx (t)� z (t)j+ sup
t2[a;b]

jz (t)� y (t)j

This can be made rigorous by resorting to the de�nition of order and applying
the triangle inequality.

Exercise 142 Show that another metric can be obtained on s by replacing 1/2i

with �i > 0 such that ��i <1

1.10.1 Balls and Spheres

To make use of sequences in a space, we need machinery which can tell us
whether or not the sequence converges or not. Other than that, the space itself
can give us good hints about the behaviour of sequences and series. This is
possible when we know what open and closed sets are. In a metric space (X; d),
we have the following

De�nition 143 Given a point x0 2 X and a real number r > 0, we de�ne three
types of sets:
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1. B(x0; r) = fx 2 X j d(x; x0) < rg (Open ball)

2. �B(x0; r) = fx 2 X j d(x; x0) � rg (Closed ball)

3. S(x0; r) = fx 2 X j d(x; x0) = rg (Sphere)

Intuitively, it is clear that in all three cases, x0 is the centre and r the
radius. Mathematically, the open ball of radius r is the set of all points in
X whose distance from the centre of the ball is than r. Try to prove that
S(x0; r) = �B(x0; r)�B(x0; r): Remember, these are two sets and you will have
to employ set-theoretic arguments.
In Analysis, an open set is one in which every element has an open neigh-

bourhood contained in that set, using the �� � de�nition. In complete analogy
(generalisation, rather), we have

De�nition 144 M � X is said to be open if it contains an open ball about
each of its points. K � X is said to be closed K{ = X �K is open

According to Real or Complex Analysis, the open set should contain �-
neighbourhood. We can have this when we replace r with � in an open ball. Thus,
B(x0; �) is an �-neighbourhood of x0 where � > 0. We will agree to call a simple
neighbourhood N of x0 as a subset of X which contains an �-neighbourhood of
x0. This � can be arbitrary (but positive!). The letter N will be reserved for
such neighbourhoods. It is unfortunate that our standard choice for a symbol
of a normed space is the same but the context will clear any confusions.
Trivially, every neighbourhood of x0 contains x0: This will be called an

interior point. We can collect all interior points of an open set M and give it
a special name �the interior of M . This will be denoted by Mo. You might
�nd that Int(M) is reserved for such a set in some literature. This set has some
interesting properties, as we shall see.
Clearly, if any neighbourhood N of x0 is contained in an open set M , then

M is also a neighborhood of x0 (proof?). An alternative de�nition of open sets
is as follows, with a trivial proof:

Exercise 145 A set M is open in a metric space (X; d) if and only if every
point is an interior point.

Theorem 146 Mo is the largest open set contained in M

Proof. Clearly, Mo � M by de�nition. To prove that this is the largest such
set, assume that there exists another open set O such thatMo � O �M . Then,
let x 2 A = O �Mo =) x is not an interior point of X. In particular, it is
not an interior point of O. Since x is arbitrary, therefore O is not an open set,
establishing the required theorem.
It is not di¢ cult to show that the collection � of all open subsets of X has

the following properties:
(� l) ? 2 � , X 2 � .
(�2) The union of any members of � is a member of � .
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(�3) The intersection of �nitely many members of � is a member of � .
Proof. Vacuously, every point of ? is an interior point. Hence, it is open.
Second, a ball of any radius, when and if constructed around any point of
X will naturally be contained in X. Hence, X is open, too. This settles
� l. For � l, let B1(x0; r1) and B2(y0; r2) be two open sets. Assign the value
max (r1; r2; d (x0; y0)) to r. Then, let A be a collection of x such that d (x; y) < r
and for a y 2 B1(x0; r1) [ B2(y0; r2). This set is clearly open for the interior
point y. The argument can be applied to arbitrary sets. Moving on to �3 , if
B1(x0; r1) \B2(y0; r2) = ?, then we are done. Assume

B1(x0; r1) \B2(y0; r2) 6= ?

Fix y 2 B1(x0; r1) \B2(y0; r2), let r = min (r1; r2) and take

8x 2 B1(x0; r1) \B2(y0; r2)

such that d (x; y) < r and we have our open set with interior point y: This
cannot be extended inde�nitely since min (r1; r2; :::) may be zero, giving us a
singleton as the intersection, or even the empty set. As an example, consider
the interval

�
� 1
n ;

1
n

�
= An. Then,

T
n
An = f0g

In analogy to interior points, we de�ne the boundary point of a closed set:
a boundary point or a limit point (synonymous with point of accumulation)
x0 2 X of a set A � X is such that 8� > 0, an open ball B(x0; �) contains
points of A other than x0. Notice that x0 need not be a member of A. The set
of all limit points of a set A is denoted by Ad. The closure of a set A, written as
Cl(A) or even �A is A [Ad: If a point is not a limit point, then it is an isolated
point.

Exercise 147 For any A, Cl(A) is closed. Moreover, Cl (A) is the smallest
closed set containing A.

Proposition 148 If a set contains isolated points only, then that set is �nite

Proof. Let (X; d) be a metric space. Assume that we have a set M � X
which is in�nite. Since we have in�nite elements, we can collect elements x such
that d (x; x0) < � for all �. Such a collection implies that x0 is a limit point,
contradicting our hypothesis. Therefore, M is �nite.
The crucial point of the proof relies on the fact that this collection is valid

for all �

Corollary 149 Every neighbourhood of a limit point contains in�nitely many
points.

Exercise 150 A set is closed if and only if it contains all its boundary points.
That is, A is closed if and only if A = Cl (A)

Exercise 151 A set S is closed if and only if every sequence converges in S.
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De�nition 152 Let (X; d) be a metric space and A � X. The diameter of a
set A is � (A) = diam(A) = sup fd (x; y) j x; y 2 Ag

Example 153 For the usual (Euclidean) metric space, diam (Z) = diam (P) =
diam (Q) = diam (R) = 1 whereas for A =

�
y j y = x2; 0 � x � 5

	
= [0; 25]

the diameter for this set is 25.

That is, the greatest distance between any two points. If the set were circular
in shape, then this de�nition would make sense. A set is called bounded if its
diameter is �nite.

Proposition 154 In the usual metric space (R; d), a subset A is bounded if and
only if it is bounded above and bounded below

Proof. diam(A) = sup fd (x; y) j x; y 2 Ag = c < 1 () d (x; y) � c for all
x; y 2 A () jx� yj � c for all x; y 2 A () �c � x�y � c () �b � x � b
for all x:

De�nition 155 A subset M of a metric space X is said to be dense in X if
�M = X or X is said to be separable if it has a countable subset which is dense
in X.

That is, we can have limit points of A within it and the result can equal to
the parent set. One good example is the set of rationals and the real set. We
all know that the set of rationals is not complete. In Analysis, real numbers can
be constructed using Dedekind cuts or the addition of limits to every Cauchy
sequence. That is, �Q = R or that the set of rationals are dense in the set of
reals. The complex plane, too, can be separated from the irrational real and
imaginary parts against the rational ones. This has importance in the theory of
operators, which will be glimpsed upon.
More technically, if M is dense in X, then 8x0 2 X and 8� > 0, B(x0; �) will

contain points of M ; or, in other words, in this case there is no point x0 2 X
which has a neighbourhood that does not contain points ofM . This is the direct
consequence of the de�nition of a limit point.

Exercise 156 The following conditions are equivalent:

1. M is dense in X

2. For every x 2 X, there exists a sequence in M which converges in X.

3. Every nonempty open subset of X contains an element of M .

To hit the point home, we will prove that the space lp is separable for
1 � p < 1. We will proceed as follows: we will �rst construct a countable
subset then basing our argument on the fact that Q is dense in R, construct
limits for every sequence of elements of lp which will be limit points of sequences
in the constructed subset.
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Proof. LetM be the set of all sequences x of the form x = (�1; �2; : : : ; �n; 0; 0; : : :)
where n is any integer. Now, we can assume that �i 2 Q 8i since we�re only
discussing real or complex sequences. Since Q is countable, Qn is therefore
countable, leading us to a countable M . That justi�es one part of the de�ni-
tion. To prove that �M = lp. Take y = (�i) 2 lp. Since this is convergent, we
have

1X
k=n+1

j�kj
p
<
�p

2

Since �Q = R, for each �k there is a rational �k close to it. Hence, we can �nd
an x 2M such that

nX
k=1

j�k � �kj
p
<
�p

2

Since

d (x; y) =

 1X
k=1

j�k � �kj
p

!1=p
We therefore have

[d (x; y)]
p
=

1X
k=n+1

j�k � 0j
p
+

nX
k=1

j�k � �kj
p
<
�p

2
+
�p

2
= �p

or that d (x; y) < �. That is, every sequence x will have a limit point y. Hence,
�M = lp

This should in no way mean that every collection of convergent sequences
forms a separable set.

Proposition 157 The space l1 is not separable.

As a reminder, it is mentioned that the proof that l1 forms a metric space
was left to the reader.
Proof. Let x = (�1; �2; : : :) be a sequence of zeros and ones. Then x converges
and hence x 2 l1. With x we associate y =

�
�i
2i

�
. Clearly, y 2 [0; 1]. Since

d (x; y) = sup
i

�����i � �i
2i

���� = sup
i

�����i2i
���� = 1

2i

If these sequences are the centre of an open ball of diameter 1
2i+1 then these

balls do not intersect and we have uncountably many of them, since [0; 1] is
uncountable (this is because the set of reals is uncountable and any interval
is isomorphic to the real line). If M � l1 such that �M = l1, then each of
these nonintersecting balls must contain an element of M implying that M is
uncountable, contradicting the hypothesis that M is countable.

Proposition 158 A discrete metric space (X; d) is separable if and only if X
is countable.
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Proof. Let X = fx1; x2; :::; xng be a countable set and let M = fxi; :::; xjg be
a subset for 1 � i; j � n. Then, for d (xi; xj) < �, we have xi = xj if � is close to
zero. Hence, any open ball B(xk; �) for 1 � k � n will contain only the element
xk and no point is a limit point. Hence, no proper subset of X can have a limit
point. Therefore, any M will not be dense in X. Since there are no limit points
in X, Xd = ?. We therefore have �X = X [Xd = X. Hence, X is dense in X
and, therefore, separable.
Conversely, assume that X is separable, that is, 9M � X such that �M = X

but Md is empty for the same reason as above. Therefore, �M = M [Md = X
implies M = X is the only possible subset. Since M (or X) does not have any
limit points, every point is an isolated point. Hence, the set is countable.
Simply put, no proper subset of separable X can have limit points if the

metric is discrete. It is surprising that we can have limit points in a speci�c
metric space whenever we can count the elements of that space, and conversely.

1.10.2 Sequences

De�nition 159 A sequence (xn) in a metric space (X; d) is said to converge
or to be convergent if there is an x 2 X such that lim

n!1
d(xn; x) = 0. Alter-

natively, a sequence is called convergent if 8� > 0, 9N such that d(xn; x) < �
whenever n > N .

In such a case, x is called the limit of (xn) and xn is said to converge to x.
This is denoted by lim

n!1
xn = x or xn �! x as n �!1. If we cannot �nd an N

for any given �, or that if the sequence fails to be convergent, we say that this
sequence diverges. A sequence (xn) is bounded if its range (xn) is bounded.

Exercise 160 In the case of norm spaces, we have lim
n!1

kxn � xk = 0. Equiv-
alently, 8� > 0, 9N such that kxn � xk < � whenever n > N . Show that these
de�nitions are equivalent.

If a sequence converges, its limit is unique
Proof. Let lim

n!1
xn = l1 and lim

n!1
xn = l2 be two limits. Then, 8� > 0, we can

�nd N1 and N2 such that d(xn; l1) < �=2 and d(xn; l2) < �=2 for n > N1; N2.
Let N = max (N1; N2). Then, d (l1; l2) < d (xn; l1) + d (xn; l2) < �=2 + �=2 = �
whenever n > N , 8� > 0. The condition d (l1; l2) < � implies l1 = l2

Exercise 161 Let �; �n be scalars. If xn �! x and �n �! �, then

�nxn �! �x

Sticking with our convention with analysis, a function is continuous at x if
lim
n!1

f (xn) = f (x) provided that lim
n!1

xn = x. This can be extended to mulitple

variables, of course. Therefore, by the above exercise, scalar multiplication is a
continuous function.
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Exercise 162 If xn �! x and yn �! y, then xn + yn �! x+ y

Thus, addition is a continuous function. You can take hints from the intro-
duction of the space C[a; b] in this monologue.
Other than a sequence, we can also take out some members of the sequence

to form a subsequence. That "order" of the sequence has to be maintained so
that in a subsequence formed by xn and, say, xn+5, we can have xn = a1 and
xn+5 = a2: In this case, we have xnk = ak. Thus, for xi, a certi�ed subsequence
is xn1 ; xn2 ; ::: where n1 is some i, n2 is another natural number greater than i
and so on.

Exercise 163 If a sequence converges to a point, then any subsequence will
converge to that point.

Proposition 164 If a sequence converges, then it is bounded.

Proof. Let xn �! x. Then, we can be assured that we will de�nitely have a
(very large) natural number N such that d (xn; x) < � 8n > N and 8� > 0: Let
m = max (d (x1; x) ; d (x2; x) ; :::; d (xN ; x) ; �). Then, d (xn; x) < m 8n which
really means that every element of the sequence is bounded.
The converse, however, is usually false. Consider the series (�1)

n

2 . This series
is bounded by �1 yet does not converge as it keeps on alternating between �1=2
and 1=2.
Now, try to prove that the sum of two bounded series and a scalar multiple

of a bounded sequence is bounded, to complete the proof that a collection of
such sequences forms a vector space.

Corollary 165 If a sequence is unbounded, then it is divergent.

Proposition 166 If x is a limit point of a subset A of a metric space (X; d),
then there exists a sequence such that xn �! x.

Proof. What we need to do is construct a sequence that converges to this limit
point. Since x is a limit point, then we can rest assured that we have an open
ball centred at x of � radius contained in X and containing points other than x;
by de�nition. Hence, we can collect such points and call them xn. Therefore,
d (xn; x) < �. What we need now is to prove that we have an N such that this is
valid for n > N . Since epsilon was arbitrary, we can let it depend on the index
n. So, � = 1=n , say. From a collection of the natural numbers, we will always
have an N such thatN� < 1. This can be seeing by applying the Archimedean
property of real numbers. Now, we have 1 > N� or 1 > N=n or n > N , which
establishes the proof.

Proposition 167 Every real sequence has a monotone subsequence

Proof. A xn sequence is monotonic if xk � xk+1 or if xk � xk+1 for all k:
Hence we can collect such points and form the required subseuqence.
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Proposition 168 (Monotone convergence theorem) Every bounded above
monotonically increasing sequence converges to its supremum

For supermum to make sense, we must have order on the set. We, therefore,
restrict this proof to that of the reals.
Proof. Let xk � x = sup

k
xk for all k. From xk � xk+1, for every � > 0, we

have an integer N such that x � � < xN � x for otherwise x � � would be an
upper bound of xk. Since xk increases, n � N implies x � � < xn � x < x + �
or jxn � xj < � for all n � N
A similar proof is left as an exercise:

Exercise 169 Every bounded below monotonically decreasing sequence converges
to its in�mum

Theorem 170 Let M be a nonempty subset of a metric space (X; d). Then

1. x 2 �M () 9xn 2M such that xn �! x

2. M is closed () xn 2M such that xn �! x implies that x 2M:

Proof. For bullet 1, we�ve proven that any limit point will have a sequence
convergent to it. The converse is a trivial result of the de�nition of convergence
and limit points. Bullet two follows by observing that if M is closed, then
M = �M

Theorem 171 Every real, bounded sequence has at least one convergent subse-
quence

Proof. If we call the bound x; then we can let a monotonic sequence converge
to that point, establishing the theorem. Details are left to the reader.
This is the famous Bolzano-Weistrass theorem and will be made use of ex-

tensively.

Proposition 172 If xn �! x and yn �! y in X, then d (xn; yn) �! d (x; y).

Proof. 8� > 0, we can �nd N1 and N2 such that

d(xn; x) < �=2

and
d(yn; y) < �=2

for n > N1; N2. Let N = max (N1; N2). Then,

d (xn; yn) � d(xn; x) + d(x; y) + d(yn; y)

=) d (xn; yn)� d(x; y) � d(xn; x) + d(yn; y)

Also,

d(x; y) � d (x; xn) + d (xn; yn) + d (yn; y)

=) � [d (x; xn) + d (yn; y)] � d (xn; yn)� d(x; y)
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Using the two inequalities, we have

jd (xn; yn)� d(x; y)j � d(xn; x) + d(yn; y) < �=2 + �=2 = �

i.e. jd (xn; yn)� d(x; y)j < � 8n > N .
Notice that in this proof, we�ve treated d (xn; yn) as a sequence with the

index n. Thus, the metric function is continuous.
Now it�s time to move on to another very useful type of sequence.

De�nition 173 A sequence (xn) in a metric space (X; d) is said to Cauchy if
8� > 0, 9N such that d(xn; xm) < � whenever n;m > N .

This can understood to mean that after a certain number of elements, the
elements of the sequence become arbitrarily close together. However, this in
no way means that every Cauchy sequence converges. Find a counter example.
First, try to prove that every convergent sequence is Cauchy i.e. if a sequence
approaches to a point, then after a certain number of elements of the sequence,
the elements of the sequence themselves will come arbitrarily close together.

Example 174 The sequence an =
nX
k=1

1=k2 is Cauchy since. Assuming that

n � m with out loss of generality

jan � amj = jam � anj

=

�����
nX
k=1

1=k2 �
mX
k=1

1=k2

�����
=

�����
nX

k=m+1

1=k2

�����
=

nX
k=m+1

1=k2 �
1X
k=N

1=k2

�
1X
k=N

1=k (k � 1)

�
1X
k=N

1= (k � 1)�
1X
k=N

1=k

= 1= (N � 1)

Proposition 175 Every Cauchy sequence is bounded

Proof. Let (xn) be Cauchy. Then, we can be assured that we will de�nitely
have a (very large) natural number N such that d (xn; xm) < � 8n;m > N and
8� > 0: Let

max
1�i;j�N

(d (xi; xj) ; �) = c

Then, d (xn; xm) < c 8n;m.
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Exercise 176 Let (xn) be a sequence in a metric space (X; d). Let

Ak = fxk+1; xk+2; :::g

Show that fxng is a Cauchy sequence if and only if lim
k!1

� (Ak) = 0 where

� (Ak) = sup fd (x; y) j x; y 2 Akg is the diameter of the set Ak.

Solution 177 ( =) )
fxng is Cauchy implies 8� > 0, 9N < m;n such that d (xn; xm) < �. Now,

� (AN ) = sup fd (xn; xm) j x; y 2 ANg < �
=) lim

N!1
� (AN ) = 0

((= )
lim
k!1

� (Ak) = 0

=) lim
k!1

sup fd (xn; xm) j x; y 2 Akg = 0 for n;m > k

=) d (xn; xm) �! 0 for n;m > k
=) fxng is Cauchy

Some spaces in which every Cauchy sequence does converge have a special
place in functional analysis, playing a crucial role in most theorems. Any such
space is said to be complete if every Cauchy sequence in it converges (that is,
has a limit which is an element in that set). If any space has a Cauchy sequence
which does not converge, then that space is incomplete. Otherwise, the space
is set to be complete. For instance, the set of rationals, as mentioned that the
completion of the set of rationals will be assumed via Dedekind cuts, forming
the reals. We can prove that every Cauchy, real sequence converges:
Proof. If we have a Cauchy sequence of real numbers (xn), we know that it is
bounded and if the Cauchy sequence is bounded, then it will have a convergent
subsequence (xnk), as was proved earlier. To make things rigorous, let � > 0.
We know that we have a K so that d (xnk ; l) <

�
2 whenever k > K and also

N so that d (xn; xm) < �
2 whenever n;m > N: Notice that nk is a sequence

which increases without bound, so that we don�t have nk > K but instead have
k > K. Now, we can pick a k > K so that nk > N . Then, for every n > N

d (xn; l) � d (xn; xnk) + d (xnk ; l) <
�

2
+
�

2
= �

Thus, d (xn; l) < �
This leads us to the complex numbers and the generalised Euclidean space

(now on, we will often use the relation d (x; y) = kx� yk frequently without any
warning).
Proof. Let xk 2 Rn be a Cauchy sequence in the generalised Euclidean space.
Here, the subscript k indicates the index, instead of n, which is reserved for
dimensionality. Then, we have kxk � xjk < �

n 8j; k > N for N 2 N This norm
is the usual norm

kxk =
q
(x1)

2
+ (x2)

2
+ :::+ (xn)

2
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which, as already mentioned, is a generalised version of the Pythagorean theo-
rem. Hence, from kxk � xjk < �

n , we haver�
x
(k)
1 � x(j)1

�2
+
�
x
(k)
2 � x(j)2

�2
+ :::+

�
x
(k)
n � x(j)n

�2
<
�

n

=)
�
x
(k)
1 � x(j)1

�2
+
�
x
(k)
2 � x(j)2

�2
+ :::+

�
x(k)n � x(j)n

�2
< �2

=)
�
x
(k)
i � x(j)i

�2
<
�2

n2

=)
r�

x
(k)
i � x(j)i

�2
<
�

n

=)
���x(k)i � x(j)i

��� < �

n

for all the i tuples. Since every i tuple is a real number, we�re actually talking
about the set of reals, which is complete. That is, every Cauchy sequence con-

verges. Hence,
���x(k)i � x(j)i

��� < � will converge to, say, xi. We can thus construct

a number x = (x1; x2; :::; xn) 2 Rn. Now,

kxk � xk

=

r�
x
(k)
1 � x1

�2
+
�
x
(k)
2 � x2

�2
+ :::+

�
x
(k)
n � xn

�2
�

r�
x
(k)
1 � x1

�2
+

r�
x
(k)
2 � x2

�2
+ :::+

r�
x
(k)
n � xn

�2
=

���x(k)1 � x1
���+ ���x(k)2 � x2

���+ :::+ ���x(k)n � xn
���

<
�

n
+
�

n
+ :::+

�

n
= �

That is, kxk � xk < �:

Exercise 178 Cn is complete

This is �rst established by the fact that R2 �= C and then using the above
construction.
What we�ve done over here is that we�ve taken an arbitrary Cauchy sequence,

constructed a limit and then proved that this sequence converges to this limit.
The �= means that the two sets are isomorphic or similar in structure to each
other. Loosely speaking, their operations, their behaviour, their multiplication
and addition rules behave the same in each individual space.

Theorem 179 A subspace M of a complete metric space (X; d) is itself com-
plete if and only if M = �M:
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Proof. If M is complete, we can have a limit point onto which a sequence
converges belonging toM , establishing the existence of limit points inM . Thus,
M = �M:
Conversely, ifM is closed, then it contains all its limits points. For a Cauchy

sequence xn in M , xn �! x 2 X since X is complete. Since x is a limit point
of xn, it is a limit point of M , establishing that any Cauchy sequence in M
converges in M .

Theorem 180 If a Cauchy sequence xn has a convergent subsequence xnk �!
x, then

xn �! x

Proof. Since we have a convergent subsequence, we therefore have d (x; xnk) <
� =2 for all �, where we are promised the existence of a natural number N1 such
that nk > N . We can also enumerate these xnk�s such that d (xnk ; xn) < �=2
for n > N because we have a Cauchy sequence. It remains trivial then to see
that d (x; xn) � d (x; xnk) + d (xnk ; xn) < �=2 + �=2 = �

Exercise 181 A Cauchy sequence of real or complex numbers is convergent if
and only if it has a convergent subsequence.

1.10.3 Continuity

Open sets also play a role in connection with continuous mappings, where con-
tinuity is a natural generalisation of the continuity known from complex and
real analysis and is de�ned as follows:

De�nition 182 Let (X; d1) and (Y; d2) be metric spaces. A mapping

T : X �! Y

is said to be continuous at a point x0 2 X if for every � > 0 there exists a
� > 0 such that

d2 (T (x) ; T (x0)) < �

whenever d1 (x; x0) < �.

T is said to be continuous if it is continuous at every point of X. Alterna-
tively, this de�nition could be phrased as follows:

Theorem 183 A mapping T of a metric space X into a metric space Y is
continuous if and only if the inverse image of any open subset of Y is an open
subset of X.

Proof. Let B � Y be an open set and let T�1(B) = fx j T (x) 2 Bg. We need
to prove that T�1 (B) is open. Let T (x0) 2 B. Since T (x0) is an interior point,
we have d2 (T (x) ; T (x0)) < � 8� > 0. Since T is continuous, this ensures the
existence of a � such that d1 (x; x0) < �. Hence for any � or for any open set, we
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can �nd a � or an open set A(x0; �) = fx j d1 (x; x0) < �g. Hence the inverse
image of every open set is open.
The converse of the proof is trivial. We start with B(T (x0) ; �); an open set,

such that T�1 (B) = A is open by suggesting that this set satis�es d (x; x0) < �
for every x 2 A, guaranteeing the existence of the required �.

Theorem 184 Let (X; d1) and (Y; d2) be metric spaces. A mapping

T : X �! Y

is continuous at a point x 2 X ()

xn �! x =) T (xn) �! T (x)

Proof. If T is continuous at x, then for every � > 0 there exists a � > 0 such
that d2 (T (y) ; T (x)) < � whenever d1 (y; x) < �. If xn �! x, then we can label
the points y when we have an n > N so that d1 (xn; x) < �, which is possible
when d2 (T (xn) ; T (x)) < �; for every � > 0 and n > N:
The converse of the proof is trivial.
Thus, the metric function is continuous. We therefore see that we have

continuity regarding functions themselves but what about sequences?
Of particular interest is the convergence of sequence of functions fn. How-

ever, in this case, we also have to consider the domain of the functions, as well.
In the ordinary notion of continuity, this convergence will depend on each point
of the domain, giving the name "point-wise convergence". Apart from this no-
tion of continuity, we also have the notion of uniform continuity, in which the
elements of the domain do not matter. Thus, in uniform continuity, we have

De�nition 185 A sequence of functions fn(x) converges uniformly if 8� >
0, 9N such that d(fn (x) ; f (x)) < � 8x whenever n > N

In uniform convergence, we have convergence of functions for every element
of the domain. This type of convergence is important when dealing with spaces
involving continuous functions. In fact, if a sequence of function converges to a
function, that is lim

n!1
fn = f , then this is valid for all x. That is, lim

n!1
fn (x) =

f (x). That � in the de�nition will depend upon x if the convergence is point-wise
and will not if the convergence is uniform.
There is another notion of convergence in the space of functions:

De�nition 186 A sequence of functions fn(x) converges pointwise if 8� > 0
8x, 9N such that d(fn (x) ; f (x)) < � whenever n > N .

The di¤erence is subtle: here N depends both on x and � whereas in the
former, for each � you need to be able to �nd an N for all x in the domain of
the function. In other words, N can depend on � but not on x. Like uniform
and ordinary continuity, the former de�nition is global in nature whereas the
other talks about convergence depending on the domain.
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Exercise 187 Show the uniform convergence implies pointwise convergence but
not conversely.

Theorem 188 If a series of functions converges uniformly, then the limit is
continuous

Proof. Let fn (x) �! f (x) uniformly. Then, we have anN such that 8� > 0 8x;
d(fn (x) ; f (x)) <

�
3 whenever n > N . We also have continuous fn (x) so that

8� > 0; 9� such that d(fn (x) ; fn (y)) < �
3 whenever d (x; y) < �. The uniform

continuity is valid for all x 2 D(f) and, in particular, whenever d (x; y) < �.
Hence, whenever d (x; y) < �, we have

d(f (x) ; f (y)) � d (fn (x) ; f (x)) + d (fn (x) ; fn (y)) + d (fn (y) ; f (y))

<
�

3
+
�

3
+
�

3
= �

so that f (x) is continuous.
Note that the above proof has to be valid for all x. Hence, convergence in

C[a; b] is always uniform and never point-wise.
Now that we have some machinery regarding Cauchy sequence, let�s see some

other examples of complete metric spaces, which include lp, l1, c and C [a; b].
Proof. The completeness of lp will follow a similar pattern; we will take an
arbitrary Cauchy sequence, construct a limit in lp and then show that this
sequence converges to that limit. So we have

d (xnxm) =
�
�
����(n)i � �(m)i

���p�1=p < �

from which we have ����(n)i � �(m)i

��� < �

Whether real or complex, each �(n)i �! �i because each ith sequence is a member
of a space of convergent Cauchy sequences. Constructing x = (�i), we need to
show that this sequence of sequences is bounded under the p-norm for it to
belong to this space. Since we�re talking about a sequence of sequences, we can

have
�
�
����(n)i � �(m)i

���p�1=p < �
pp2 . Using this, we have�

�
����i � �(m)i

���p�
=

�
k

�
i=1

����i � �(m)i + �
(m)
i � �(n)i

���p�
�

�
k

�
i=1

����i � �(m)i

���p + k

�
i=1

����(m)i � �(n)i

���p�
<

�
�
p
p
2

�p
+

�
�
p
p
2

�p
= �p
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We will then have d (xm; x) =
�
�
����(m)i � �i

���p�1=p < �, implying that the

Cauchy sequence converges. In particular, we have

d (xm; x) =
�
�
����(m)i � �i

���p� < �p = c

implying that the sequence
�
�
(m)
i � �i

�
belongs to the space. Since xm was a

member and xm � x is a member, we can use the fact the vector addition is
closed to say that x = xm � (xm � x) belongs to the space.
In a similar way, we can prove that l1 is complete.

Proof. Taking an arbitrary Cauchy sequence xm =
�
�
(m)
i

�
, we have

d (xm; xn) = sup
i

����(m)i � �(n)i

��� < �

for all n;m > N . The de�nition of supremum implies that
����(m)i � �(n)i

��� < � for

all i: Again, the ith Cauchy sequence �(n)i converges to, say, ith limit �i. Now,
we construct (�i). To prove that (�i) 2 l1, observe that����(m)i � �(n)i

��� < � =)
����(m)i � �i

��� � �

This is valid whenever m > N . For any sequence y = (�i) 2 l1, we have

j�ij � cy. Similarly, �
(m)
i 2 l1 implies that

����(m)i

��� � cm where this constant

depends on the mth term of xm. Then,

j�ij

�
����(m)i � �i

���+ ����(m)i

���
� �+ cm = k

=) j�ij is bounded
=) sup j�ij exists

=) sup
����(m)i � �i

��� exists
Since

����(m)i � �i
��� � �, we have sup

����(m)i � �i
��� � � whenever m > N and

� > 0
An analogous proof holds for n-tuples x = (�1; �2; :::; �n) and y = (�1; �2; :::; �n)

under the metric
d(x; y) = max

i
j�i � �ij

The space c is a subspace of l1 and involves not only bounded sequences
but also sequences which are convergent. Hence, the collection of convergent
sequences also forms a vector space. Try to prove �rst that the sum of two
convergent sequences is a convergent sequence and that a scalar multiple of a
convergent sequence is convergent. This space is complete, as well.
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Proof. We can pursue this proof by the normal way or take a detour and apply
the fact that subspace of a complete metric space is itself complete if and only if
the space is closed. Hence, if we can prove that c is closed in l1, we�re done. We
take a limit point x of c. This x = (�i). Then, we clearly have a sequence xn in
c which converges to this point. But c is a collection of convergent sequences.
Hence, this x belongs to c. Therefore, c is closed.
The space C[a; b] is also complete under its usual norm

Proof. For any Cauchy sequence (xn) we have

d (xn; xm) = max
t2[a;b]

jxn (t)� xm (t)j < �

which says that we can have a t0 2 [a; b] such that jxn (t0)� xm (t0)j < �. These
are, then, not continuous functions but points in a complete (complex or real)
space. Hence, we can have a xn (t0) �! x (t0) but this is a real or complex
number, not a function. What we need is an arbitrary t, which we can still get
by remembering that we had a maximum function. So, we then associate for
each t, xn (t) �! x (t). Notice that the convergence will depend on t. So, in this
case, we have point-wise convergence. To show that the limit x (t) belongs to the
space, we let n �! 1 in d (xn; x) to get d (xm; x) � d (xn; xm) + d (xn; x) < �.
Hence, we have

d (xm; x) = max
t2[a;b]

jx (t)� xm (t)j < �

This convergence is now uniform since the limit is valid for any t 2 [a; b]. Since if
continuous functions converge uniformly, then the limit will also be continuous,
as has been proved earlier. Therefore, x (t) is continuous or that x (t) 2 C[a; b].
That is, any Cauchy sequence of continuous functions has a limit in the same
space, establishing completeness.
The above proof indicates why the metric is also referred to as the uniform

metric. If we change the norm to the integral norm, the space C[a; b] becomes
incomplete. We will see the case for a = 0 and b = 1.

Theorem 189 In space C[a; b], convergence is always uniform

Proof. From xn (t) �! x (t), we have

d (xn; x) = max
t2[a;b]

jxn (t)� x (t)j < �

=) jxn (t)� x (t)j < � 8t

i.e. the epsilon is independent of the points of the domain.
Apart from these well-structured spaces, the discrete metric space is always

complete
Proof. Let xn be a Cauchy sequence. Then, d (xn; xm) < �: If this 0 < � < 1,
then xn = xm for n;m > N . Thus, with x = xN , we have d (xn; x) = 0 < �
For incomplete spaces, we start o¤ with the usual set of rationals.

Proof. To show that the set of rationals Q is incomplete, we take the Cauchy
sequence xn =

�
1 + 1

n

�n
. The limit of this sequence is the exponential e. We
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show that this sequence is indeed Cauchy. Let m = n+ q for an integer q. For
su¢ ciently large n;m under the metric d (x; y) = jx� yj, we have

d (xn; xm) =

�����
�
1 +

1

n

�n
�
�
1 +

1

n+ q

�n+q�����
=

�����
�
1 +

1

n

�n
�
�
1 +

1

n+ q

�n+q�����
=

�����
nX
k=0

�
n

k

��
1

n

�k
�
n+qX
k=0

�
n+ q

k

��
1

n+ q

�k�����
=

������
�
1 + 1 + n�1

2!n +
(n�1)(n�2)

3!n2 + :::+ 1
nn

�
��

1 + 1 + n+q�1
2!(n+q) +

(n+q�1)(n+q�2)
3!(n+q)2

+ :::+ 1
(n+q)n+q

� ������
=

����� n�1
2!n +

(n�1)(n�2)
3!n2 + :::+ 1

nn

� n+q�1
2!(n+q) �

(n+q�1)(n+q�2)
3!(n+q)2

� :::� 1
(n+q)n+q

�����
To this last experssion, we can apply the triangle inequality to each term indi-
vidually. Hence, for a large n, we have smaller and smaller distances between n
and m. In other words, for any �, we can always �nd a value for n so that the
Cauchy condition is certi�ed.
From real analysis, it is well known that e = 1 + 1 + 1

2! +
1
3! + :::. Hence,

we�ll show that lim
n!1

xn = e = 1
0! +

1
1! +

1
2! +

1
3! + ::: is irrational. We�ll proceed

by contradiction. Assume e = p
q . Then,

q!e = q! +
q!

1!
+
q!

2!
+ :::+

q!

q!
+R

where R = 1
q+1 +

1
(q+1)(q+2) + ::: is the remainder of the terms. Since

q!e = (q � 1)!p

is an integer and

q! +
q!

1!
+
q!

2!
+ :::+

q!

q!

is also the �nite sum of integers (implying that it, itself, is an integer), hence R
is an integer but

1

q + 1
+

1

(q + 1) (q + 2)
+ ::: <

1

q + 1
+

1

(q + 1)
2 + ::: =

1

q

so that R < 1
q means that R is not an integer. This is our contradiction so we

can conclude that e 6= p
q

In summary, we have lim
n!1

xn =2 Q where xn is Cauchy, implying that Q is

incomplete.
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Other than the rationals, the set Z is also incomplete under the metric

d (m;n) = jm� nj

For, from a Cauchy sequence (xn), we have

d (xn; xm) = jm� nj < �

This sequence does not converge for � = 1
N for n > N:

The completion for this metric space is the set of reals, as already mentioned.

The space of polynomials P [a; b] is also not complete.

Proof. The Cauchy sequence

xn =
nX
k=0

x

k!

converges uniformly to the function ex which is not a polynomial. For, if n;m >
N , we have

jxn � xmj =

�����
nX
k=0

x

k!
�

mX
k=0

x

k!

�����
=

������
max(n;m)X
k=min(n;m)

x

(k + 1)!

������
which can be made as small as we like. Notice, also that the the epsilon will not
depend on x.

The space C[0; 1] under the norm

kx(t)k =
1Z
0

jx(t)j dt

is incomplete.

Proof. If we have a sequence

xn =

�
0 if 0 � t � 1

2
1 if 1

m +
1
2 � t � 1
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of functions, we get a Cauchy sequence if m;n > 1=� . This is because

kxn(t)� xm (t)k

=

1Z
0

jxn(t)� xmj dt

=

1Z
1=2

jxn(t)� xmj dt

=

1Z
1=2

j1=m� 1=nj dt

� (j1=mj+ j1=nj)
1Z
1=2

dt

< (2�) (1=2) = �

Now, for any x 2 C; from kxn(t)� x (t)k < � and n > N , we should have

1Z
0

jxn(t)� xj dt

=

1=2Z
0

jxn(t)� xj dt+
1=2+1=nZ
1=2

jxn(t)� xj dt+
1Z

1=2+1=n

jxn(t)� xj dt

=

1=2Z
0

jx(t)j dt+
1=2+1=nZ
1=2

jxn(t)� xj dt+
1Z

1=2+1=n

jx(t)� 1j dt < �

In other words, each integral is less than �. Now, recalling that the choice of �

is arbitrary, we have x(t) = 0 for 0 � t < 1=2 from
1=2R
0

jx(t)j dt < �. t = 1=2 fails

because of the middle integral in the range (1=2; 1=2+1n) where n is very large.
Finally, if the last integral has to be arbitrarily small, we can safely say that
x(t) = 1 in the range (1=2 + 1n; 1]: From this, we can observe that lim

t!1=2
x(t)

fails to exist because lim
t!1=2�

x(t) 6= lim
t!1=2+

x(t), implying that the function is not

continuous, so that we cannot have any limit for the particular Cauchy sequence
xn(t):

This special case of the interval [0; 1] has no particular importance. For
instance, the interval [a; b] can be mapped from [0; 1] using the transformation
x = (b� a) t+ a for t 2 [0; 1] so that C[0; 1] is ismorphic to C[a; b]:
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Other than this machinery, we can also complete a metric space. Intuitively,
this is done by "adding" limit points so that every Cauchy sequence converges.
Of course we can�t include elements in the set on our own accord but what we
can do is make the set "equal" to another complete subset of another space.
This "equality" is not the true equality which we are wired to think of and is
based on the de�nition of a type of isomorphism which follows this paragraph.
This strange "equality" of sets makes the two sets indiscernable with respect to
their structure and properties but the substance itself di¤ers. For instance, as is
known, the set Q is constructed from Z� (Z� f0g). The removal of 0 ensures
that zero is excluded in the denominator. The resulting set Q is not TRULY
equal to an extension of the set of integers so that it is unfair to state that
Z � Q, strictly speaking. Z happens to a single set whereas Q is the Cartesian
product of both. What can actually be said is that Z�f1g� Q. However, there
exists an isomorphism between Z�f1g and Z, so that the sets are equal in
their properties and structure but not substance, as you can clearly see. For all
practical purposes, people usually don�t beat about the bush and simply state
Z � Q, which is safe to say because of the concept of isomorphism. To make
the point relatable to completion, it is not true, strictly speaking, that �Q = R
because Q has holes in it and we have absolutely no authority to add points
to complete the set of rational numbers but what we can do is make the set
Q isomorphic to subset of complete set. Thus, while we�re not really adding
points, we�re still making the set complete by accounting for the missing holes,
which is why we have the colloquial "addition of points".
Here is the promised de�nition:

De�nition 190 A mapping T from a metric space (X; d) into
�
X̂; d̂

�
is said

to be an isometry if T 8x; y 2 X; d̂(T (x) ; T (y)) = d(x; y): Two metric spaces
are said to be isometric or isomorphic as metric spaces if there is a bijective
isometry between them.

If such a bijective mapping T : X ! X̂ can be found, then X is said to be
isometric with X̂. This is the isomorphism for two metric spaces. Intuitively,
an isometry preserves distances so nearby points in one space and equivalently
near in another metric space. Remember, in metric spaces, one is concerned
with distance between two points so that if two metric spaces have the same
structure and properties i.e. must be isometric, then the distance between two
points must be conserved and nothing else matters �not the names of the points,
at least.
In order to complete any metric space, we can show that it is isomorphic

to a dense subspace of a complete metric space and that this complete metric
space must necessarily exist. Furthermore, this metric space is unique (up to
isomorphism).

Theorem 191 For a metric space (X; d), there exists a complete metric space�
X̂; d̂

�
which has a subspace W that is isometric with X̂ such that �W = X̂.

Furthermore, this space is unique except for isometries.
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Proof. First, we focus on the construction of
�
X̂; d̂

�
. Let xn and �xn be Cauchy

sequences in X. We will call two Cauchy sequences equivalent if they have the
same limit i.e.

lim
n!1

d (xn; �xn) = 0

This will be written as (xn) � (�xn) : We can then gather all such equivalent
sequences and form an equivalent class. Indeed, (xn) � (xn) is trivial, so this
relation is re�exive. Also, since the arguments of a metric function are symmet-
ric, the relation � is symmetric. Finally, if (xn) � (yn) and (yn) � (zn), we
have

d (xn; zn) � d (xn; yn) + d (xn; yn)

Taking limits on both sides and using the fact that the metric function is always
positive, we have

lim
n!1

d (xn; zn) = 0

so that (xn) � (zn), implying transitivity. Thus, we can have for ourselves
an equivalence class x̂ = f�xng of Cauchy sequences. We can collect all such
equivalence classes x̂; ŷ; ::: and form the set X̂. For this set, we can have the
metric function

d̂ (x̂; ŷ) = lim
n!1

d (xn; yn)

where xn 2 x̂ and yn 2 ŷ. Note that this is not equal to zero since xn and yn are
members of a di¤erent equivalence class. To show that this limit is well-de�ned
or that this de�nition is sensible and not ambiguous with di¤erent results for
the same choice of inputs, we will �rst show that this limit exists and then show
that it is independent of the choice of representatives. First, we have

d (xn; yn) � d (xn; xm) + d (xm; ym) + d (ym; yn)

=)
d (xn; yn)� d (xm; ym) � d (xn; xm) + d (ym; yn)

Similarly,
d (xm; ym) � d (xm; xn) + d (xn; yn) + d (yn; ym)

=)
d (xm; ym)� d (xn; yn) � d (xm; xn) + d (yn; ym)

=)
� (d (xm; xn) + d (yn; ym)) � d (xn; yn)� d (xm; ym)

this is basically b � a and �b � a so that we have jaj � b. Hence,

jd (xn; yn)� d (xm; ym)j � d (xn; xm) + d (ym; yn)

Now, since xn is Cauchy, we have d (xn; xm) < �=2 and similarly d (ym; yn) <
�=2. This in turn implies that for n;m > N

jd (xn; yn)� d (xm; ym)j < �
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so that
lim
n!1

d (xn; yn) = lim
m!1

d (xm; ym)

Hence, d̂ (x̂; ŷ) is just as valid for any Cauchy sequence. Now, we prove that�
X̂; d̂

�
is a metric space. d̂ (x̂; ŷ) = 0 () lim

n!1
d (xn; yn) = 0 () lim

n!1
xn =

lim
n!1

yn so that (xn) � (yn), making them members of the same equivalence

class. Since members of an equivalence class are either disjoint or the same,
therefore x̂ = ŷ. Next, since d (xn; yn) � 0; we have d̂ (x̂; ŷ) � 0. Furthermore,
d (xn; yn) = d (yn; xn) so that d̂ (x̂; ŷ) = d̂ (ŷ; x̂). Finally,

d (xn; zn) � d (xn; yn) + d (yn; zn)

so that d̂ obeys the triangle inequality.
We have just proved that for any metric space (X; d), we will have another

metric space (X̂; d̂) by accounting for the limits of the Cauchy sequences, made
possible by clumping all Cauchy sequences with common limits. Let W � X̂
and let T : X �!W be a mapping such that T (a) = â where â is an equivalence
class of constant Cauchy sequences. Here, W is a subclass of constant Cauchy
sequences. Since if two sequences are both constant and converge to the same
limit, then the two sequences are equal. Thus, every equivalence class of constant
Cauchy sequences will be a singleton so that b̂ will only contain the Cauchy
sequence (b; b; :::). We will now prove that this is an isometry.
First, notice that the mapping is clearly onto. This can be understood by

recalling how we arrived at X̂ and hence W . Next, for T (b1) = T (b2), we have
b̂1 = b̂2 so that the mapping is one-to-one. Hence T is bijective. Finally, T is
an isometry since

d̂ (T (a) ; T (b)) = d̂
�
â; b̂
�
= lim

n!1
d (an; bn) = d (a; b)

To show that this W is dense in X̂. For that, we need to show that the limit
points of W are in X̂. That is, if x̂ 2 X̂, we should have d̂(x̂; x) < � 8� > 0
contained in W for x 2 W . For x̂ 2 X and (xn) 2 x̂. Now, for any Cauchy
sequence xn the inequality

d (xn; xN ) < �=2

will be valid 8� > 0 whenever n > N . For the constant sequence

(xN ; xN ; :::) = x̂N 2W

we have
d̂(x̂; x) = lim

n!1
d (xn; xN ) � �=2 < �

so that every neighbourhood of x̂ will contain a point of W .
To show that X̂ is complete, let (x̂n) be any Cauchy sequence in X̂. Now,

since W is dense in X̂, every point x̂n 2 X̂ and 8� > 0; we can �nd a point
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ẑn 2W so that d̂(x̂n; ẑn) < �. We can choose this � = 1=n so that the sequence
(ẑn) becomes Cauchy. This can be observed as follows:

d̂(ẑm; ẑn) � d̂(ẑm; x̂m) + d̂(x̂m; x̂n) + d̂(x̂n; ẑn)

< 1=m+ d̂(x̂m; x̂n) + 1=n

Since the element of W , ẑn; is Cauchy, (zm) = T�1 (ẑm) is also Cauchy in X.
If (zm) is contained in the class x̂; then

d̂(x̂n; x̂) � d̂(x̂n; ẑn) + d̂(ẑn; x̂)

< 1=n+ d̂(ẑn; x̂)

= 1=n+ lim
m!1

d (zn; zm)

Since the sequence (zm) is an element of the equivalence class of Cauchy se-
quences x̂ and ẑn is an equivalence class of Cauchy sequences and is contained
in W , we have (zn; zn; zn; :::) 2 ẑn and thus the inequality can be made as small
as we like, implying that the limit of x̂n is x̂

If
�
~X; ~d

�
is another complete space with a subspace ~W which is isometric

with X such that ~W is dense in ~X. Then, for any ~x; ~y 2 ~X , we apply the same
method as above to get��� ~d (~x; ~y)� ~d (~xn; ~yn)

��� � ~d (~x; ~xn) + ~d (~y; ~yn)

so that ~d (~xn; ~yn) �! ~d (~x; ~y), implying that X̂ and ~X are isometric.

Example 192 If (X; d) is complete, then
�
X; ~d

�
is complete for ~d = d= (1 + d)

since for any Cauchy sequence xn,

~d (xn; x) =
d (xn; x)

1 + d (xn; x)

= 1� 1

1 + d (xn; x)

For a large n, d (xn; x) < 1
1�� � 1 is valid since the distance between the points

of the Cauchy sequence and its limit point can be made arbitrarily small. Now

1 + d (xn; x) <
1

1� �

1� � <
1

1 + d (xn; x)

�� 1 > � 1

1 + d (xn; x)

� > 1� 1

1 + d (xn; x)

so that ~d (xn; x) < � for any Cauchy sequence.
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Just for a sneak peak:

De�nition 193 A series associated with a sequence xn is the sum of all the
terms of the sequence.

More compactly, a series can be written using the summation symbol �xn.
A series converges if this sum is �nite.

Example 194 If a rabbit hops in�nite hopes such that every hop is half the
distance of its previous hop, then the total distance will be represented by a� 1

2n

where a is the distance covered by the �rst hop.

Problem 195 Show that the open set of reals (a; b) is incomplete whereas [a; b]
is complete.

Solution 196 The trick over here is to construct a particular Cauchy sequence
which converges to a or b. This does mean that the sequence does not converge
in the particular open subset. For this, xn = b� 1=n or even xn = a+1=n does
fairly well. The fact that the latter interval is closed automatically quali�es it
for completeness. For a particular construction, see the related theorem.

Problem 197 Show if the in�nite sum
X

xn converges, then xn �! 0



More spaces

There is a way in which we can form new vector spaces out of old ones

De�nition 198 The direct sum of two vector spaces V andW is the set V �W
of pairs of vectors (v; w) in V and W , with the operations (v1; w1) + (v2; w2) =
(v1 + v2; w1 + w2) and c(v; w) = (cv; cw) where c is a scalar.

Thanks to the axiom of choice, we have the following result

Theorem 199 Let V be a vector space over a �eld F. Then, V is isomorphic
to
M

F

This direct sum is isomorphic to the Cartesian product if the dimension of
I is �nite.
However, we will focus our attention on which spaces can be taken out from

existing ones.

1.11 Subspaces

A subspace of a vector space is so that the subset inherits the structure. So,
for a vector space V , if we have a A � V and if this satis�es all the axioms of a
vector space using the addition and scalar multiplication de�ned for V , we have
a subspace. Needless to say, the improper subspaces are the trivial subspace f0g
or the space V itself. Any other subset, if it satis�es the ten axioms using the
induced vector addition and scalar multiplication, is a subspace. However, this
method of veri�cation is too lengthy. We can make use of the fact that vector
addition is a binary operation. As already established, we can have a subgroup
H of a G if and only if 8a; b 2 H; ab�1 2 H. This will take care of the fact
that we have an Abelian group for vector multiplication. But what about scalar
multiplication? For that we have a theorem:

Theorem 200 A subspace of a vector space V is a nonempty subset A of V
() for all u;v 2 A and all scalars �; � we have �u� �v 2A.

The proof for groups has been worked out. Try to prove this on your own.
Just like the intersection of two subgroup is again a subgroup, we have

following:

lxxxvi
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Exercise 201 Show that the intersection of two vector subspaces A and B of a
vector space X is a vector space.

Function spaces are not restricted to one-dimensional intervals. Recall that
functions can be de�ned for mutliple variables. Also remember that we do
have complex valued functions. Note that di¤erentiability is usually de�ned
on an open interval (a; b). In our case above, we have the closed interval [a; b]
but the derivative at the end points can be easily de�ned as the right and left
derivative for the left and right end point, respectively. This is a weaker version
of di¤erentiability but it does not harm in one-dimension. The situation is
troublesome in more than one-dimension so that we are forced to consider open
sets in the mutiple variable case. Thus, if we let 
 be an open subset of Rn,
then we can have the following subspaces all functions from 
 into R, which the
reader is required to prove:

� C(
), the space of all continuous complex valued functions de�ned on 
.

� Ck(
), the space of all complex valued functions de�ned on 
 with con-
tinuous partial derivatives of order k.

� C1(
), the space of in�nitely di¤erentiable functions de�ned on 
.

� P (
) = the space of all polynomials of n variables (considered as functions
on 
).

In case we have complex-valued functions, then recall that a function is
analytic (derivative of every order exists) if and only if the derivative of the
�rst order exists. Thus, the di¤erence (except for the space of polynomials)
disappears.
Thus, what we have covered so far for C [a; b] applies equally well to these

more general cases.

Example 202 If we have a vector space of the usual plane R2, a subspace would
be R �that�s the x-axis. Similary, the y-axis is a subspace, too

The union of two vector spaces is not a vector space in general. For instance,
in the example above, (a; 0) belongs to the subspace corresponding to the x-axis.
Similary, (0; b) is a vector belonging to the subspace corresponding to the y-axis.
However, in the union of the x-axis and y-axis, the element (a; 0)+(0; b) = (a; b)
does not belong to the union of y-axis and x-axis (it belongs to the span �covered
later)
But what do we mean by dimension? And is the dimension of c, the space

of all convergent sequences the same, less or greater than the dimensionality of
l1, of which it is a subspace? For that, a few more de�nitions.

De�nition 203 A linear combination of vectors x1; x2 ; :::; xn of a vector
space X is an expression of the form �1x1 + �2x2 + :::+ �nxn where �i 2 F.
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We will side step the de�nition, admittedly, at times: for us, linear combina-
tion will not refer only to the expression but also to the value of �1x1+�2x2+
:::+ �nxn. This will be clear from context.

Example 204 For scalars 2; 3 and vectors (1; 2) and (2; 4), we have the linear
combination 2 (1; 2) + 3 (2; 4) = (2; 4) + (6; 12) = (8; 16).

The word "linear" indicates that the vectors are not non-linear i.e. we do
not have any square, square roots, or cube-roots. For vectors, this considera-
tion is meaningless, all the same, since we don�t know how to multiply vectors
yet, let alone take their roots. Of course, this does not mean we�re discussing
trivial matters and just beating about the bush �such ideas to come in advance
functional anslysis.
From linear combinations, we can move forward to de�ne dimensions but for

now, another de�nition.

De�nition 205 For any nonempty subset A of a vector space V , the set of all
linear combinations of vectors of A called the span of A, written span(A). A
set T � V is called total in V if spanT = V .

Example 206 The span of the vector (1; 2; 3) is � (1; 2; 3) i.e. all vectors that
are parallel to it. Note that in this case, anti-parallel vectors are also included
(anti-parallel means that the vectors are parallel but with an opposite direction)

Example 207 spanf(2; 4) ; (1; 3)g = � (2; 4) + � (1; 3)

For any such A, spanA is a subspace of the vector space V . In fact, it is the
smallest vector subspace of V containing A
Proof. For any x;y 2 A, �x� �y 2spanA:
We�re just a step away from de�ning dimensions.

Example 208 � A = f(x; x; 0) j x 2 Rg
This is a subspace of R2 because for any scalars � and �,

�x� �y = � (x; x; 0)� � (y; y; 0)
= (�x� �y; �x� �y; 0) 2 A

� A = f(x� 1; x; z) j x 2 Rg
For any scalars � and �, �x � �y =� (x� 1; x; z) � � (y � 1; y; z) =
(� (x� 1)� � (y � 1) ; �x� �y; �z � �z) =2 A since the �rst element is
not �x� �y � 1. Hence A is not a subspace of R2

� A = f(x; y; z) j x; y; z 2 R+g
This set will not have additive inverses so is not a subspace of R2

� A = f(x; y; z) j x; y; z 2 R and x� y + z = constantg
The additive identity does not belong to this set hence A is not a subspace
of R2
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De�nition 209 A linear combination of vectors x1; x2 ; :::; xn is linearly in-
dependent in a vector space V if �1x1+�2x2+:::+�nxn = 0 () �i = 0 8i.

Such a combination is not linearly independent or is linearly dependent if
9�i 6= 0. This also means that for any j, we cannot have (proof?)

xj = �1x1 + �2x2 + :::�j�1xj�1 + �j+1xj+1 + :::+ �nxn

Thus, no such vector can be written as a linear combination of other vectors
which, together, form a linear independent set.
To show that this de�nition does not just apply to ordinary physical vectors

we�re used to, consider xi (t) = ti 2 P [a; b]. That is, the set of �nite degree
polynmials Then, if

nX
i=1

�it
i = 0

This is only possible () �i = 0 8i i.e. if a polynomial equals zero, then all the
scalars have to be zero. Notice that there is no scalar in this polynomial. What
we�re looking for is the roots of this polynomial. One root, clearly, is t = 0.
We can then factor the remaining polynomial and �nd its roots, in which case
we�ll have non-zero scalars which can form a linearly dependent combination!
The trick is to know that this cannot be repeated forever or that the �eld may
not be algebraically closed. This will have to evoke some ring and �eld theory,
which I, sadly, have to skip. Why bring this up in the �rst place? This is
a very important fact for practical purposes. Consider a di¤erential equation
which must have two linearly independent solutions. You can also think of this
basis as the basis for di¤erent transcendental functions: recall the polynomial
expansion of ex; sinx and cosx:
An important use of this is in the theory of Ordinary Di¤erential Equations.

An n-th order homogenous ODE will have n linearly independent solutions.
These form the basis of the "solution space". Thus, a linear combination of
any of the solution of the given ODE are also a solution, provided the ODE is
homogenous.
The name derives from the fact that a linear combination of such vectors

can never be produced by any single other vector i.e. if the vectors are zero and
some scalar is non-zero, then the non-zero scalar can be written as the linear
combination of the remaining vectors. For instance, the vectors (1; 0; 0), (0; 1; 0)
and (0; 0; 1) are linearly independent i.e. the usual i; j;k axis cannot create
any one from each other whereas the vectors (1; 2) and (2; 4) are not. Also,
if any third vector were written out, it would depend on these three linearly
independent vectors �not more, not less.

Lemma 210 If there are n such linearly independent vectors, then n+1 vectors
are linearly dependent

A subset B of V is called linearly independent if every �nite linear combina-
tion of vectors in B is linearly independent. This is equivalent to the condition
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that every x 2 V can be written in precisely one way as
nX
i=1

cixi, ci 2 F and xi

2 B for some �nite i. That is, B is linearly independent and every vector v 2
V can be obtained as a �nite linear combination of vectors from B.
The use of the word �nite is very important here. We know how to add

two vectors and how to scale one, thanks to the axioms. However, from the
axioms, all we can do is repeat this �nite number of times. In particular, we
cannot have an in�nitely long linear combination. As discussed, there are two
types of in�nities �countable and uncountable. For the uncountable case, it can
be proven that the sum of an uncountable number of elements always diverges,
which makes the summation notation of uncountable terms useless in our case.
The trouble is with the countable case. This gives us a series. We are in no
position to talk about the convergence of a series in a vector space because we
don�t have a norm.
Thus, ? 6= B � V is called a Hamel basis in V if span(B) = V . By span,

we mean that every vector in V can be represented as a �nite linear combination
of elements of B. Note that we cannot have a Hamel basis for the space l2. The
elements ei with the tuple 1 in the i-th position and zero otherwise does not
form a Hamel basis for l2. For instance, the element

�
1; 12 ;

1
4 ; :::

�
2 l2 cannot be

written as a �nite linear combination of ei�s
This leads to our long-awaited notion of dimension.

De�nition 211 A vector space V is said to have dimension n, written dimV =
n, if every vector x 2 V can be written out as a linear combination of a linearly
independent set of n vectors

For any choice of basis, we will need n such vectors in order to span the
whole space. It can be proven that for any basis X and Y of a vector space V ,
jXj = jY j, the proof of which requires signi�cant set theory. We shall mention
another idea in passing: the axiom of choice roughly states that we can have a
function for any set which can "pick" or "choose" elements from the set. This
has been shown to be equivalent to the fact that every vector space has a basis.
For �nite dimenionsal spaces, the use of the word "�nite dimensional" itself
guarantees that there must exist such a Hamel basis. In the in�nite dimensional
case, this can be done by evoking another very fundamental theorem known as
Zorn�s lemma. This will not be covered in the current course.Hence, when
dimV = n is mentioned, this n is well-de�ned.
One clear insight for this is that if B is the set of n basis for vector space

V , we have spanB = V . Note that if we happen to remove one element of the
basis, then we�ll be left with n�1 elements which will not span the entire space.

Exercise 212 Show that if jBj = n and a 2 B for spanB = V , then A = Bn fag
is not a basis

By default, this means that any set of n+ 1 or more vectors of V is linearly
dependent. By de�nition, V = f0g is �nite dimensional and dimV = 0. If n is
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not �nite, then V is said to be in�nite dimensional. Again, the i; j;k axis set
the intuition for the dimension and clearly satisfy this de�nition, as highlighted
above. As mentioned, such linearly independent vectors are called basis if they
are used as a spanning set. For Rn, we can have the basis

e1 = (1; 0; 0; :::; 0)

e2 = (0; 1; 0; :::; 0)

...

e2 = (0; 0; 0; :::; 1)

which are also called the canonical basis or the standard basis.
The basis of a �nite dimensional vector space are not unique. In fact, we can

make do with any linearly independent set so as long as both the sets span the
vector space. What is unique is the representation of any vector in the speci�c
basis.
Proof. Consider �i and �i. Now, if

x =
nX
i=1

�iei =
nX
i=1

�iei

are two di¤erent representations of the same vector in the same basis, then
clearly �i = �i because we can compare the ei�s

Theorem 213 Let V be an n-dimensional vector space. Then, for any proper
subspace A, dimA < dimV .

Proof. If n = 0, V = f0g so that there is no proper subspace and there is
nothing left to prove. If V is not a trivial vector space, then let dimV = n and
A 6= f0g be a proper subspace. Clearly, the subspace of a �nite vector space is
�nite so that we can have dimA = m. By the law of trichotomy, we have three
options viz. m < n, m = n and m > n. The last options says that A is not a
subspace because it has more basis than its parent space. If m = n, then both
spaces have the same dimension and hence the span, making them equal. So,
we are left with m < n.
We�ve mentioned that l2 is a vector space. We�ve also mentioned that every

space has a basis. But we�ve also mentioned that the basis in the usual sense
(Hamel basis) are non-existent for l2. What do we do? Make a new de�nition:
take a sequence of basis (en) such that the series

1X
i=1

�iei

converges for a choice of a sequence of scalars (�n) : Since the limit of any series
is unique (proof?), therefore we can safely write out v = ��iei. That is, the
expansion of any vector v is determined by the choice of a sequence of scalars.
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Such a basis is called the Schauder Basis. Needless to say, the idea of
convergence is not de�ned in a vector space since it is not necessarily a norm
space. In fact, even if it were a normed space, we might not have a limit (not
every normed space is a Banach space). Thus, Schauder basis usually exist in a
Banach space because for any element of a Banach Space, we can �nd a sequence
that converges to that point and this sequence can be the partial sum of the
series mentioned above.
Just like vector spaces, we have subspaces in norm spaces. Formally, for a

norm space N and a subset A of N , A is a norm space if it satis�es the properties
of norm. The norm of the subspace is said to be induced from the parent space.
Just like studied earlier, this subspace can be closed or complete even if the
parent space is not.
An important result for Banach spaces, seen further, is that the closure of a

subspace is again a subspace
Proof. Since the only di¤erence between a subspace and its closure is that of
limit points, we will focus on the fact that limit points obey the structure of the
norm space.
Let A be the subspace of a norm space N . If x and y are limit points,

then we will have sequences xn �! x and yn �! y. Since xn + yn 2 A, and
x; y 2 �A, we have xn + yn �! x + y 2 �A proving that the subspace is closed
under addition. As already asked to prove, xn �! x implies �xn �! �x (for
norm spaces, see Proposition 218). But �x 2 �A so that scalar multiplication
is well-de�ned. Thus, for �xn + �yn, �x+ �y 2 �A
Needless to point out, there are subspaces of norm spaces which are open

and not closed.

Example 214 The subspace Q comprising of convergent sequences of rational

numbers is not closed. One example is the sequence Sn =
nP
1=k2 which is

convergent to �2=6 in l2 but this point does not belong to Q. See Basel problem
in the start for further details. Since this limit point does not belong to Q,
therefore Q is not closed.

Example 215 For l1 the subspace comprising of bounded sequences but not
convergent ones is not closed.

1.12 Metric Spaces and Norm Spaces

As already explained why, a norm space can be converted into a metric space
by de�ning d (x; y) = kx� yk. This is called the metric induced by the norm.
The norm of any single vector, then, can be viewed as its distance from the zero
vector. In Rn, this is the origin. However, there is still a distinction between the
two in terms of structure. For instance, objects of a norm space are necessarily
vectors whereas in a metric space, one can have ordinary points. In fact, one does
not need any other relation between the points in a metric space. This should
be easy to understand because the discrete metric can convert any ordinary set
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into a metric space, even the set fAlina; Ajmal; Junaid; Haroong. Metric
spaces are "coarse" whereas normed spaces have a richer structure. In short,
every norm space is a metric space but not conversely.
Since we now have a way of "equating" any norm with a metric, convergence

of sequences and related concepts in normed spaces follow readily from the
corresponding de�nitions. For instance, a sequence (xn) in a normed space
(N; k:k) is convergent if () 9x such that lim

n�!1
kxn � xk = 0 () 8� > 0 ,

9N such that kxn � xk < � whenever n > N .

Example 216 To show that the sequence (an) =
�
1=n2

�
converges to 0 under

any norm, we can let � > 1=N so that n > N implies 1n2 � 0


=

 1n2
 < 1=N2

 < 1=N < �

Thus, if we have any given epsilon, we can �nd an N so that the criterion of
convergence is satis�ed.

Just like in ordinary calculus or Real/Complex analysis, the following propo-
sition carries over to this more generalised space

Proposition 217 The sum of two convergent sequences is convergent

Proof. Let xn �! x and yn �! y. Then, for any � > 0; we can have N1
such that kxn � xk < �=2 for n > N1: Similarly, we have an N2 such that
kyn � yk < �=2 for n > N2. Now,

kxn + yn � (x+ y)k
� kxn � xk+ kyn � yk
< �

for n > N = max (N1; N2)

Proposition 218 The scalar multiple of a convergent sequence is convergent.

Proof. For xn �! x, we can have kxn � xk < �= j�j so that for k�xn � �xk =
j�j kxn � xk < �
Try to prove that the norm on C[a; b] is uniform.

Lemma 219 A metric d induced by the norm on a normed space (N; k:k) is
invariant to translation and scales appropriately. That is,

1. d (x+ a; y + a) = d (x; y)

2. d (�x; �y) = j�j d (x; y)
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Proof. d (x+ a; y + a) = k(x+ a)� (y + a)k = kx+ a� y � ak = kx� yk =
d (x; y)

d (�x; �y) = k�x� �yk = k� (x� y)k = j�j kx� yk = j�j d (x; y)

Proposition 220 jkyk � kxkj � kx� yk

The reader will recall this proposition as an exercise for the modulus (norm
on R)
Proof. d (y; 0) � d (y; x) + d (x; 0) so that d (y; 0)� d (x; 0) � d (y; x) = d (x; y)
Next, d (x; 0) � d (x; y) + d (y; 0) so that d (x; y) � � (d (y; 0)� d (x; 0)).

Combining the two, we have

jd (x; 0)� d (y; 0)j � d (x; y)

from which we get the required result.
Using this, we can prove that the norm is continuous

Proof. Since for continuity, we must have a � > 0 for every � > 0 in

jkyk � kxkj < �

whenever kx� yk < �. It is clear that from kx� yk < �, we have

jkyk � kxkj < kx� yk < � = �

Alternatively, this can be proved by evoking the sequential de�nition of
continuity: let kx� xnk < �. Then, jkxk � kxnkj < � = �. In other words, if
xn �! x, then kxnk �! kxk :

1.13 Convex Spaces

Informally, we can have convex spaces if any line originating from one point and
ending at another is contained within the set.

De�nition 221 A subset A of a vector space V is said to be convex if x; y 2 A
implies M = fz 2 X j z = �x+ (1� �) y; 0 � � � 1g is contained in A.

Such a subset has boundary points x; y and any other point is an interior
point.

Example 222 Any closed interval in the set of real numbers is convex

Example 223 The closed unit ball is convex

We introduce over here what is commonly called the Parallelogram Equal-

ity: kx+ yk2 + kx� yk2 = 2
�
kxk2 + kyk2

�
. The equality has a geometrical

description: Recall that the vector from y to x is given by x � y. Thus, x � y
happens to be a diagonal of a parallelogram with one side x and the other side
y. On the other hand, x+ y is also the other diagonal.

Exercise 224 Construct a normed space which does not satisfy the parallelo-
gram equality.
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1.14 Complete Norm Spaces

We have just proved instances of norm spaces which are complete and which
can be completed. Moving on to a more general notion, we have

De�nition 225 A Banach Space is a complete normed space (complete in
the metric de�ned by the norm).

Needless to say, a sequence (xn) in a normed space (N; k:k) is Cauchy if
() lim

n�!1
kxn � xmk = 0 () 8� > 0 , 9N such that kxn � xmk < �

whenever n;m > N .
We have already seen examples of complete metric spaces. The examples

we�ve covered so far (except for the discrete metric space) are also norm spaces
and, therefore, Banach Spaces.

Theorem 226 A subspace A of a Banach space N is complete if and only if
the set A is closed in N

That is, A subspace A of a Banach space N is complete if and only if �A = A.
The proof of this theorem is similar to that proved for metric spaces. Only the
metric has to be replaced by the norm. We state it here for emphasis
Proof. If (xn) is Cauchy in A if and only if there exists a limit x in N . A is
closed if and only if x 2 A. Hence A is Banach.

Theorem 227 Let (N; k:k) be a normed space. Then there is a Banach space
B and an isometry T from N onto a subspace A of B such that �A = B.The
space B is unique, except for isometries.

Again, the proof for this theorem follows similar lines of reasoning as that
for the completion of metric spaces. Again, try to do this yourself.
Apart from the notion of sequences carrying over to norm spaces courtesy

of the induced norm by the metric, we can make use of the additional structure
of a norm space and de�ne series.

De�nition 228 The partial sum Sn of a sequence (xn) is de�ned as

Sn = x1 + x2 + :::+ xn

This can be seen as a sequence in itself. As n �!1, the whole sequence is
being added. That is, Sn �! S = x1 + x2 + :::. Making use of the norm, we
have kS � Snk < � for some N such that n > N . If this S is �nite, then the
series converges. Otherwise, it diverges. If kx1k+ kx2k+ ::: converges, then the
series is said to be absolutely convergent. For real numbers, it is true that
absolute convergence implies convergence but for norm spaces in general, this
is not valid. Consider the sequence with elements

y1 =
�
1=12; 0; 0; :::

�
y2 =

�
0; 1=22; 0; 0; ::

�
y3 =

�
0; 0; 1=32; 0; ::

�
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The series formed by the addition of elements of this sequence is not convergent.
For l2 norm, we have

ky1k+ ky2k+ :::
= 1 + 1=22 + 1=32 + :::

= �2=6

so that Sn =
�
1; 1=22; 1=32; :::; 1=n2; 0; 0; :::

�
and

kSn � Sk � 1=N2

for n > N where S = lim
n!1

Sn so that we cannot make this di¤erence arbitrarily

small.
The argument is invalid for Banach spaces. In fact, N is Banach if and only

if every absolutely convergent series is convergent.
Proof. If B is a Banach space, then let

P
kxkk be convergent for a sequence

xk. What this means is that we can have an integer N such that

1X
k=N

kxkk < �

If we have an N such that for n;m > N , the partial sums Sn and Sm for

Sn =
nX
k=1

xk

can give us

kSn � Smk =


mX
k=n+1

xk


for n < m. Then, 

mX
k=n+1

xk

 �
mX

k=n+1

kxkk < �

i.e. kSn � Smk < � is Cauchy. Since this is a Cauchy sequence, we must have a
limit point S. Thus, S = lim

n!1
Sn exists and is �nite so that the series converges.

Conversely, let every absolutely convergent series be convergent and let xn
be a Cauchy sequence. Since kxn � xmk < �, we can have an integer n1 so that
kxn � xmk < 2�1 for n;m � n1. Again, we can �nd a n2 such that

kxn � xmk < 2�2

for n;m � n2: Moving on, we can �nd nk such that

kxn � xmk < 2�k
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for n;m � nk. In particular, since

nk+1 > nk � nk

we can have n = nk and m = nk+1 so that we havexnk+1 � xnk < 2�k
Thus, we can have a subsequence nk such thatxnk+1 � xnk < 2�k
If we substitute yk for xnk+1 � xnk , thenX

kykk < �

implying that we have an absolutely convergent series. By our hypothesis, it
should converge. Thus,

P
yk �! S and the sequence of partial sums of yk

converges and this is a subsequence of xn. Since xn has a convergent and is
Cauchy, it will also converge to the same limit as its subsequence (see previous
proofs on sequences). Thus, this particular Cauchy sequence converges, which
implies our space is Banach.
As already brought up, the basis for transcendental functions can be thought

of as the linearly independent polynomials. Other than that, we have a power
series expansion of any continuous function about a point or 0, called the Taylor
or McLaurin series, respectively. This asks us to consider the relationship be-
tween norm spaces, series and their convergence when they are used to represent
the basis of a space; in short motivating the following de�nition:

De�nition 229 If there exists a sequence en in a norm space N such that

kx� (�1e1 + �2e2 + :::+ �nen)k �! 0

for every x 2 N , then en is called a Schauder basis.

The series x =
P
�nen represents x and is called the expansion of x with

respect to (en). This basis could be powers of x in the case of, say, the cosine
function. Here�s another example to make this a bit more abstract:

Example 230 lp has a Schauder basis (en) where

e1 = (1; 0; 0; 0; :::)

e2 = (0; 1; 0; 0; :::)

e3 = (0; 0; 1; 0; :::)

:::

This is just like the ordinary basis for Rn except that n is in�nite.
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This can be shortly written as en = (�nj). Here,

�ij =

�
1 i = j
0 i 6= j

is the Kronecker delta "function".

Theorem 231 If a normed space has a Schauder basis, then the space is sepa-
rable.

We digress a little to talk about norm spaces. Remember that from given
vector spaces, we can form a new vector space by simply taking their Cartesian
product and de�ning addition and scalar mutliplication component-wise. We
can do something similar with norm spaces. Given two norm spaces, (N1; k:k1)
and (N2; k:k2) over the same �eld F, we can form a new norm space by taking
the Cartesian product of the given norm spaces. We can de�ne addition and
scalar multiplication for

N1 �N2 = f(x; y) j x 2 N1; y 2 N2g

such that (x1; y1) + (x2; y2) = (x1 + x2; y1 + y2) and � (x; y) = (�x; �y) for a
scalar � and x; x1; y1 2 N1 and y; x2; y2 2 N2.

Exercise 232 Show that the norm k:k : N1 � N2 �! R such that k(x; y)k =q
kxk21 + kyk

2
2 de�nes a norm, e¤ectively showing that the product of norm

spaces is a norm spaces. Furthermore, show that if N1 and N2 are Banach
spaces, then so is N1 �N2 under the same norm k:k

1.15 Finite Dimensional Spaces

In this section, we�ll focus on �nite dimensional vector spaces in general and
�nite dimensional norm spaces in particular. Some of the properties are fairly
generic. One intuitively understandable property is that of completeness. Let
us start with a lemma.

Lemma 233 Let fx1; x2; :::; xng be a set of linearly independent vectors in a
normed space N . Then, there is a number c > 0 such that for any choice of
scalars �1; �2; :::; �n

k�1x1 + �2x2 + ::::+ �nxnk � c (j�1j+ j�2j+ :::+ j�nj)

Proof. The lemma holds trivially if all the scalars are zero. Let j�1j + j�2j +
:::+ j�nj > 0. Then k�1x1 + �2x2 + ::::+ �nxnk � c (j�1j+ j�2j+ :::+ j�nj)
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) k�1x1 + �2x2 + ::::+ �nxnk
(j�1j+ j�2j+ :::+ j�nj)

� c

) k�1x1 + �2x2 + ::::+ �nxnk
kj�1j+ j�2j+ :::+ j�njk

� c

)
 �1

j�1j+j�2j+:::+j�njx1 +
�2

j�1j+j�2j+:::+j�njx2+

::::+ �n
j�1j+j�2j+:::+j�njxn

 � c

) k�1x1 + �2x2 + ::::+ �nxnk � c (say)

It should be remarked that
nP
j=1

���j�� = 1
Suppose k�1x1 + �2x2 + ::::+ �nxnk < c with

nP
j=1

���j�� = 1. Then, 9 a

sequence ym = �
(m)
1 x1 + �

(m)
2 x2 + :::: + �(m)n xn such that ym �! 0 with

nP
j=1

����(m)j

��� = 1 from which we have
����(m)j

��� � 1
Since �(m)j is a bounded sequence for every j, then there must exist a cor-

responding convergent subsequence for each j, according to the Bolzano Weier-
strass theorem. Let y1;m denote the corresponding subsequence for ym. Since
ym is bounded, y1;m is also bounded and has a convergent subsequence y2;m
(say). Continuing this way, we can obtain n such subsequnces. �j is a limit for
each j subsequence and, consequently, yn;m �! y = �1x1 + �2x2 + ::::+ �nxn
as m increases without bound. It is clear that �j 6= 0 for each j otherwise y = 0
but ym �! 0 =) ynm �! 0 =) y = 0 which is a contradiction.

Example 234 For R2, this c can be found as follows:
k�1e1 + �2e2k � c (j�1j+ j�2j) where e1 = (1; 0) and e2 = (0; 1) are the nat-

ural orthogonal basis. Thus, utilising the norm generalised by the Pythagorean
theorem, we have

c �
q
�21 + �

2
2= (j�1j+ j�2j)

In general, for Rn we have, c �
nP
j=1

q
j�j j2=

nP
j=1

j�j j

Theorem 235 Every �nite dimensional normed space N is complete.

Proof. Consider the Cauchy sequence xk and a set of linearly independent
basis fe1; e2; :::; eng. We can represent the k-th term of this sequence as xk =
�
(k)
1 e1 + �

(k)
2 e2 + ::: + �

(k)
n en where the superscript is not a power but rather

serves as a reminder that the scalars �i will depend on k. Now, For n;m > N

kxn � xmk < c�

=)


nX
j=1

�
�
(n)
j � �(m)j

�
ej

 < �
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=) 9c such that c
����� nPj=1�(n)j � �(m)j

����� �
 nP
j=1

�
�
(n)
j � �(m)j

�
ej

 < c�

i.e.

����� nPj=1
�
�
(n)
j � �(m)j

������ < � which is a Cauchy sequence of scalars belonging

to a complete �eld. Needless to say, we have convergence so that we can use
n such limits of the form �i to construct x = �1e1 + �2e2 + ::: + �nen so that
x 2 N . Now,

kxk � xk =


nX
j=1

�
�
(k)
j � �j

�
ej


�

������
nX
j=1

�
�
(k)
j � �j

������� kejk
� b

������
nX
j=1

�
�
(k)
j � �j

�������
where b = max

j
ej

kxk � xk � b

������
nX
j=1

�
�
(k)
j � �j

�������
< b�

so that the Cauchy sequence converges, implying convergence.

Corollary 236 Every �nite dimensional subspace A of a normal space N is
closed in N .

Proof. If A is �nite dimensional, then it is complete and hence closed. Details
left to the reader.
The argument is invalid for in�nite dimensional spaces. Here�s a counter-

example:

Example 237 The in�nite dimensional space C [0; 1] with basis
�
t; t2; t3; :::

�
for

x(t) 2 C [0; 1] does not have a limit. Consider e = lim
n!1

an where an =
�
1 + 1

n

�n
.

We know that
x(t) = et = t0=0! + t1=1! + t2=2! + :::

in the given basis. We have already proved that an is Cauchy in the proof for
the incompletness of rational numbers. Since an is Cauchy, we can prove that
xn (t) = t0=0! + t1=1! + t2=2! + :::+ tn=n! is also Cauchy without a limit.

De�nition 238 The norm k:k1 on any normed space N is said to be equiva-
lent to another norm k:k2 if 9 a; b 2 R+ such that 8x 2 N

a kxk1 � kxk2 � b kxk1
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This condition can be shown to be equivalent to the following: equivalent
norms have similar limits for Cauchy sequences, which is what the de�nition
actually means. This should be related to the example of the sequence an =
1=n2:
Proof sketch. If xn is a Cauchy sequence under k:k1, then kxn � xmk1 < a�
for n;m > N but if this norm is equivalent to k:k2, then from a kxk2 � kxk1
implies kxn � xmk2 < � which shows that the Cauchy sequences are the same if
the reverse argument kxk1 � b kxk2 is applied. Using similar reasoning, we can
show that the limits are the same.
We can move a step ahead and �nd for ourselves an equivalence class of

similar Cauchy sequences.
Other than the equivalence of Cauchy sequence, this concept is motivated

by the following fact: equivalent norms on N de�ne the same topology for N .
Proof sketch. Suppose that a norm k:k1 generates a topology �1 and k:k2
generates the topology �2. What this means is that open sets (balls) in either
topology will be formed from their respective norms. To prove that the topolo-
gies are equivalent, we need to prove that they are both subsets of each other.
This can be done by showing that every open set in one topology is contained in
another because of the radius of the ball is less than or equal to than a constant
times the radius of the other. Details are left to the reader.

Theorem 239 Any two norms on a �nite dimensional space are equivalent

Proof. Let X be an n-dimensional vector space with norms k:k1 and k:k2
8x 2X; x = �1e1 +�2e2 + ::::+�nen where e1; e2; :::; en are the basis for X

and �1; �2; :::; �n are scalars
Then,

kxk1 = k�1e1 + �2e2 + ::::+ �nenk1
� k�1e1k1 + k�2e2k1 + ::::+ k�nenk1
= j�1j ke1k1 + j�2j ke2k1 + ::::+ j�nj kenk1

Let k = max
1�i�n

keik1
Then,

j�1j ke1k1 + j�2j ke2k1 + ::::+ j�nj kenk1
� j�1j k + j�2j k + :::+ j�nj k
= (j�1j+ j�2j+ :::+ j�nj) k

Also,

kxk2
c

=
k�1e1 + �2e2 + ::::+ �nenk2

c
� (j�1j+ j�2j+ :::+ j�nj)

Combining the two inequalities, we get
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kxk1 � (j�1j+ j�2j+ :::+ j�nj) k �
k kxk2
c

or
c

k
kxk1 � kxk2

which is the �rst half of the inequality for a = c=k. The second inequality
kxk2 � b kxk1 can be obtained in a similar fashion.
In particular, the norms on R2 are equivalent:
k(x; y)k1 = jxj+ jyj (the Manhattan norm)
k(x; y)k2 = 2

p
x2 + y2 (the Pythagorean norm)

k(x; y)k1 = max (jxj ; jyj) (the in�nity norm)

1.16 Compact Spaces

De�nition 240 A metric space (X; d) is said to be compact if every sequence
in X has a convergent subsequence.

Example 241 All complete metric spaces are compact.

Example 242 Any continuous and bounded curve in Rn with a �nite length is
compact.

A general property of compact sets is expressed in:

Lemma 243 A compact subset A of a metric space (X; d) is closed and bounded.

Proof. If A is compact, then there is a sequence xn with a convergent subse-
quence in A. If x is a limit point of A, then we can have this sequence xn with
a convergent subsequence so that xn �! x 2 A. This implies that A is closed
since this limit point was arbitrary. If A is not bounded, then we would have
an unbounded and hence divergent sequence in A, which cannot be true since
A must necessarily have convergent subsequences.
Rn and thus Cn are not compact because these spaces are neither closed nor

bounded. In particular, the sequences xm = (m� n;m� n+ 1; :::;m� 1;m)
do not have a convergent subsequence. However, closed subsets of these spaces
are, as will be proved later.
The in�nite discrete metric space is also not compact. Consider any sequence

xn: In fact, a discrete metric space is compact if and only if it is �nite.
The converse of this lemma is in general false. Consider a subspace of l2 with

sequence (en). This sequence is bounded since kenk = 1 and for every element
of the sequence, kenk < 1+ � for � > 0: However, (en) does not converge so that
the set containing (en) does not have a convergent subsequence.
For a �nite dimensional normed space we have:

Theorem 244 Let N be a �nite dimensional normed space. A � N is compact
if and only if A is closed and bounded.
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Proof. We have already proved the su¢ cient conditions for this theorem in
the lemma. For the necessary condition, we assume that A is n�dimensional,
closed and bounded. Take the sequence xm so that

xm = �
(m)
1 e1 + �

(m)
2 e2 + :::+ �

(m)
n en

This sequence is bounded because the set A is itself bounded. Say kxmk � k.
Then, 9c > 0 such that

k � c
nX
j=1

����(m)j

���
The j�sequence of numbers

�
�
(m)
j

�
are bounded so that by the Bolzano, Weis-

trass theorem, it will have a convergent subsequence.

Theorem 245 If a subset A of a compact metric space X is closed, then A is
compact.

Proof. Since A is closed, for a limit point x of A, there exists a sequence
xn such that xn �! x. Clearly, a convergent sequence will have a convergent
subsequence, implying that A is compact.
A good example would be closed and bounded subsets of Rn but for in�nite

dimensional spaces, of course the above stated property is not valid. A counter
example has already been presented. We now move ahead with another result
useful for the analysis of compact and even convex sets.

Theorem 246 (Riesz�s lemma) Let A = �A � B be subspaces of a normed
space N . Then for every real number � 2 (0; 1) there is a b 2 B such that
kbk = 1, kb� ak � � 8a 2 A.

Proof. Take an element v belonging to B but not A. The distance from v to
the set A is

d = inf
a2A

kv � ak

Since A is closed, therefore no element not contained in A has to be at a distance
of at least � > 0. Thus, d > 0. By the de�nition of in�mum, we will an a0 2 A
such that d � kv � a0k � d

� for � 2 (0; 1). Let b = c (v � a) where c = 1
kv�a0k .

Then, kbk = 1. Also, kb� ak = kc (v � a0)� ak = jcj
v � a0 � c�1a =

c kv � a1k where a1 = a0 + c�1a where this a1 is variable. Now, kv � a1k � d
so that we now have kb� ak = c kv � a1k � cd = d= kv � a0k � d= (d=�) = � so
that kb� ak � �
This lemma is useful in proving the following, thus o¤ering a characterisation

of compactness.

Theorem 247 If a normed space N has the property that the closed unit ball
A = fx j kxk � 1g is compact, then N is �nite dimensional.
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The converse obviously holds, given our development so far.
Continuity has to do with open sets, as already seen �it maps inverse images

of open sets to open sets. Similarly, it maps inverse images of closed sets to closed
sets. For bounded operators, bounded sets are mapped to bounded sets. Since
boundedness and continuity are equivalent at a point, we can say the same for
closed and bounded sets; in other words, compact sets:

Theorem 248 Let (X; d1) and (Y; d2) be metric spaces and T : X �! Y a
continuous mapping. Then, the image of a compact subset A of X under T is
compact.

Proof. Let xn be a sequence with a convergent subsequence in A. That is,
xnk �! x. Then, T (xnk) �! T (x) so that the subsequence T (xnk) of T (xn)
has a point of convergent, giving us a compact set T (A).

Corollary 249 A continuous mapping T of a compact subset A of a metric
space (X; d1) into R assumes a maximum and a minimum at some points of A.

Proof. Since A is compact, it is closed and bounded so that there will exist
points which correspond to maximum and minimum.



Operators

In real and complex analysis, real and complex valued functions are used with
a speci�ed domain and range. In a similar analogy, we will develop a theory of
a more general class of functiosn called operators which will act from general
spaces to general spaces.

De�nition 250 Let X and Y be vector spaces over the same �eld. Then, an
operator T : X �! Y is linear if for all x; y 2 X and scalars �, T (x + y) =
T (x) + T (y) and T (�x) = �T (x).

Example 251 The identity operator 1̂(x) = x is clearly linear.

Example 252 The zero operator 0̂ (x) = 0 is also linear by default.

Example 253 The di¤erential operator

d

dx
: P [a; b] �! P [a; b]

is linear. For, let f(x) =
nP
i=0

�ix
i by any polynomial. Then,

d

dx
f(x) =

nX
i=1

�ix
i�1 2 P [a; b]

where �i = i�i. Then,

d

dx
[f(x) + g(x)] =

d

dx
f(x) +

d

dx
g(x)

and
d

dx
�f(x) = �

d

dx
f(x)

Example 254 Another operator T from C[a; b] into itself can be de�ned by

T (x(t)) =

Z
x(�)d�

is linear. See the example on bounded operator for details.

cv
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Example 255 An operator T from C[a; b] into itself de�ned by

T (x(t)) = tx(t)

This operator is linear. For T (�x (t)) = t (�x) (t) = � (tx(t)) = �T (x (t)).
Furthermore,

T (x (t) + y (t))

= t (x (t) + y (t))

= tx (t) + ty (t)

= T (x (t)) + T (y (t))

Lemma 256 An operator T : X �! Y is linear if and only if 8x; y 2 X and
8�; � 2 F , T (�x+ �y) = �T (x) + �T (y)

Proof. T (�x+ �y) = T (�x) + T (�y) = �T (x) + �T (y)
Conversely, by de�nition, T (�x) = �(T (x)) = �T (x)
For the �rst property of linearity, we have

T (�x+ �y)

= �T (x) + �T (y)

= T (�x) + T (�y)

If �x = u and �y = v; then from T (�x + �y) = T (�x) + T (�y), we have
T (v + u) = T (u) + T (v)

Exercise 257 The graph of a linear operator is a vector space.

For the de�nition of a graph of a function, which is a general case of an
operator, see Chapter 1, Set Theory.

Example 258 The operator T : R3 �! R3 de�ned by T (w) = v �w is linear
where v =(v1; v2; v3) is a �xed vector in R3 and "�" is the usual cross product
for vectors. This can asily be seen as follows: T (�x+ �y) = v � (�x+ �y)
= (v � �x) + (v � �y) = � (v � x) + � (v � y)
= �T (x)+�T (y), where we have resorted to the well-established identities for

cross multiplication, which may easily be veri�ed by resorting to the determinant
notation for cross product. Since this operator is linear, it will and does, indeed,
preserve linear dependence.

Example 259 M2 (F) is called the collection of all 2x2 matrices with elements
from a �eld F. This is a ring with multiplicative identity�

1 0
0 1

�
and additive identity �

0 0
0 0

�
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This collection forms a group and a ring with identity. If we restrict this col-
lection to have matrices with non-zero determinants, then we have for ourselves
inverses for each element. If scalars are taken from the �eld of complex or real
numbers, then we have for ourselves a vector space. Note that multiplication is
not commutative. We can also de�ne for ourselves a norm and get a normed
space. At any rate, if we take a �xed matrix M in this space and let T (x) =Mx
be an operator. This operator is clearly linear. Also, T�1 will exist ifM�1 exists
or if M has a non-zero determinant.

Thus the check for linearity may be shortened to the statement of this lemma
instead of refering to the original de�nition. As an immediate consequence,
linear operators preserve linear dependence. Of special importance is the fact
that for any linear operator T and 0 vector, T (0) = 0
Proof. T (0) = T (x� x)
= T (x+ (�1x))
= T (x) + T (�1x)
= T (x)� T (x)
=0
This linearity can be looked upon as a structure preserving operator between

vector spaces. To hit the point, two vector spaces are said to be isomorphic if
there exists a bijective linear operator between them. The theorems that follow
might make this clearer.

Theorem 260 Linear operators preserve linear dependence

Proof. Let �1e1 + :::+ �nen = 0 () �i = 0. Then,

T (0) = �1T (e1) + :::+ �nT (en) = 0

() �i = 0

Theorem 261 R(T ) is a vector space if T is linear

Proof. Each axiom for the vector space can be checked individually for veri�-
cation here.

Theorem 262 Let T be a linear operator. Then dimD(T ) = n < 1 implies
dimR(T ) � n.

Proof. dimD(T ) = n <1 =) for x 2 D(T ), we have x = �1e1 + :::+ �nen
so that T (x) = �1T (e1) + ::: + �nT (en) clearly implying that dimR(T ) � n
since if �1e1 + :::+ �nen = () �i = 0 so that �1T (e1) + :::+ �nT (en) = 0
() �i = 0

De�nition 263 Let Let X and Y be vector spaces and T : X �! Y be an
operator. Then, the null space N (T ) or kernel of T , denoted by kerT is the
set fx j T (x) = 0g :
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This is the complement of the suppT

Example 264 The null space for T : R3 �! R3 de�ned by T (w) = v �w is
fw j w = �vg :

Theorem 265 Let T be a linear operator. Then kerT is a vector space.

Proof. We will prove that kerT � D(T ) is a subspace. For x; y 2 kerT ,
T (�x� �y) = �T (x)� �T (y) = 0 so that �x� �y 2 kerT
After this, we consider inverses of operators. As it turns out, inverses exist

only when the function is into, just as in calculus. For a review on functions,
see the introductory chapter. We can shorten the criteria for bijectiveness and
consider only the following:

Theorem 266 Let X; Y be vector spaces, both real or complex. Let

T : X �! Y

be a linear operator with range R(T ) � Y . Then, the inverse

T�1 : R(T ) �! X

exists if and only if T (x) = 0 implies x = 0. This T�1 is a linear operator.
Furthermore, dimD(T ) = n <1 and T�1 exists =) dimR(T ) = n:

Proof. We replace the notion as follows: T�1 exists if and only if kerT =
f0g :Suppose that T�1 exists. Then, T (x1) = T (x2) implies x1 = x2 so that if
x2 = 0, T (x1) = T (0) = 0 or x1 = 0. Thus, x1 = 0 is the only element in kerT .
Conversely, Suppose that kerT = f0g. Then, T (x) = 0 implies x = 0. Let

T (x1) = T (x2). Then, T (x1)� T (x2) = 0
or T (x1 � x2) = 0 or x1 � x2 = 0 or x1 = x2. Thus, T is injective. Thus,

T�1 exists.
To show that T�1 is linear, we proceed as follows: since T�1 exists, we can

expect T to be into. Then, for y1 = T (x1) and y2 = T (x2) so that T�1 (y1) = x1
and T�1 (y2) = x2. Now, if T is linear,

T (�x1 + �x2) = �T (x1) + �T (x2) = �y1 + �y2

Thus, T�1 (�y1 + �y2)
= T�1T (�x1 + �x2)

= �x1 + �x2
= �T�1 (y1) + �T

�1 (y2)

i.e. T�1 (�y1 + �y2) = �T�1 (y1) + �T
�1 (y2)

Corollary 267 Let T : X �! Y be linear and dimX = dimY = n < 1.
Then, R(T ) = Y () T�1 exists.
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Proof. If we can prove that T (x) = 0 for only x = 0, then we�re done. Let
e1; e2; :::; en be the basis for X. Then, fT (e1) ; T (e2) ; :::; T (en)g is linearly
independent so that if T (x) = 0, then we have

T

 
nX
i=1

�iei

!
= 0

or  
nX
i=1

�iT (ei)

!
= 0

This is possible only when �i = 0 because fT (e1) ; T (e2) ; :::; T (en)g is linearly
independent so that x = 0.
Conversely, if T�1 and dimD(T ) = dimX = n implies dimR(T ) = n.

Also, dimY = n. So, we have dimY = dimR(T ) = n. Now, if T was not
surjective, we must have had y 2 Y such that T (x) 6= y for any x so that
R(T ) � Y , implying dimY > dimR(T ), which is the required contradiction.

Corollary 268 Let T : X �! Y and S : Y �! Z be bijective linear operators,
where X; Y and Z are vector spaces. The inverse (ST )�1 : Z �! X of the
composite ST exists and (ST )�1 = T�1S�1

Proof. Since S and T are bijective, ST is bijective. Thus, (ST )�1 exists. We
also know that (ST )�1 ST = 1̂ so that (ST )�1 S = T�1 and further

(ST )
�1
= T�1S�1

This combination of operators is said to commute if S (T (x)) = T (S (x))
8x. This is shortened to ST = TS:
In light of this exploration, another de�nition is in order:

De�nition 269 Let (N; k:k1) and (M; k:k2) be normed spaces and T : N �!M
a linear operator. N and M are said to be isomorphic as normed spaces if
kT (x)k2 = kxk1 8x 2 N

This links the idea of isometry between normed spaces as metric spaces.
We�ve already explored the concept of isomorphism between two metric spaces
(isometry) and we know that every norm space is a metric space. In this light,
you have the following exercise:

Proposition 270 The linear combination of bijective operators is bijective

Proof. It is straightforward to show that a combination of linear operators
is linear. Let T; S be bijective on the same domain. Then, T (y) = 0 and
S (y) = 0 implies y = 0 and we need (�T + �S) (x) = 0 implies x = 0. If x 6= y,
then T (x) = 0 so that kerT 6= f0g
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Exercise 271 Show that if two spaces are isomorphic as norm spaces, then they
are isomorphic as metric spaces.

Let us turn our attention to the norm of operators. Before that, we need to
set some de�nitions straight.

De�nition 272 Let (N; k:k1) and (M; k:k2) be normed spaces and T : N �!M
a linear operator. The operator T is said to be bounded if there is a real number
c > 0 such that 8x 2 N kT (x)k2 � c kxk1

Note that the norms do not have to be necessarily the same. However,
since both norms obey particular properties viz. homogenity and the triangular
inequality, we can safely perform an algebra on both sides. From now on, we
will drop this convention of invoking subscripts to remind us where the norm
comes from since the situation will normally make this clear.
An alternative way to frame this de�nition is as follows:

Theorem 273 A linear operator T : X �! Y is bounded if and only if T maps
bounded sets X into bounded sets Y .

Proof. The de�nition of boundedness in a metric space is as follows:

diam(A) = sup fd (x; y) j x; y 2 Ag = b <1

() d (x; y) � b for all x; y 2 A which can be rephrased as

diam (A) = sup kx� yk = b8x; y 2 A

where A � X or, equivalently, �b � kx� yk � b. So, if we have a bounded set
A, then using

kT (z)kY � c kzkX
for all z 2 A and z = x� y, we get

kT (z)kY � a = b=c

Trivially, kT (z)kY � 0 so that we can have kT (z)kY � �a for a > 0
Conversely, assume bounded sets are mapped to bounded sets. Assume that

T is not bounded. Then,
kT (z)k � c kzk

for some c > 0. This implies

kT (z)k
b

� kT (z)k
kzk � c

or kT (z)k � cb, which is our required contradiction.
This goes out to say that the range of a bounded operator need not be

closed. This enables us to di¤erentiate between bounded operators and compact
operators. Since the operator is continuous, the inverse images of open (resp.
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closed) sets must be open (resp. closed). If the image of a subset of the range
is not closed, then the domain must necessarily not be closed.
Recall the de�nition of supremum. It is an upper bound and the lowest of

the upper bounds of a set. Thus, we can collect all x such that kT (x)k
kxk � c and

de�ne a supremum out of it. If we can �nd a smallest such c, then we have

De�nition 274 The norm of a bounded linear operator T , denoted by kTk, is
de�ned as kTk = sup

x

kT (x)k
kxk .

Needless to say, this is valid when kxk 6= 0. Also, the norm of kTk can be
taken over normalised vectors so that kTk = sup

kxk=1
kT (x)k.

Note the requirement for a norm to exist: the operator must be bounded.
Since kTk = sup

x

kT (x)k
kxk , we can safely say that kTk � kT (x)k

kxk for all x so that

we have for ourselves the inequality

kT (x)k � kTk kxk

Thus, the following de�nitions are equivalent:
kTk := sup

x6=0

kT (x)k
kxk = sup

kxk=1
kT (x)k = sup

0<kxk�1
kT (x)k = sup

0<kxk<1
kT (x)k =

inf fk : kT (x)k � k kxk ;8xg
Proof. Let A =

n
kT (x)k
kxk : x 2 Xn f0g

o
B = fkT (x)k : x 2 Xn f0g and kxk = 1g
C = fkT (x)k : x 2 Xn f0g and kxk � 1g
D = fkT (x)k : x 2 Xn f0g and kxk < 1g
Since equal sets have the same supremum, we will show that A = B = C = D
Clearly, A contains B, C and D.
Let a 2 A
() a = kT (x)k

kxk for some x 2 Xn f0g
Since X is a norm space and closed under scalar multiplication, we can let

kykx = y
() y 6= 0 and kyk = 1 so that a = kT (y)k for some y 2 Xn f0g
() a 2 B
() A = B
It is clear that D � C and that B [D = C so that B � C as well.
Further, B = A � C so that we have B = A = C
To show that B � D
a 2 B
=) a = kT (x)k for some x 2 Xn f0g and kxk = 1
Assume that 9 (xn) 2 B such that xn �! x.
Let yn = n�1

n xn. Then, yn �! y since kxnk �! kxk and kyk < 1
Then, an = kT (yn)k =

n�1
n

 kT (xn)k �! kT (y)k = a

Finally, we show that sup
x6=0

kT (x)k
kxk = inf fk : kT (x)k � k kxk ;8xg
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Assume that sup
x6=0

kT (x)k
kxk = �

Then, kT (x)k � � kxk
=) sup

x6=0

kT (x)k
kxk � inf fk : kT (x)k � k kxk ;8xg

Next, inf fk : kT (x)k � k kxk ;8xg � kT (x)k
kxk � �� 1

n for all n
So that inf fk : kT (x)k � k kxk ;8xg = �
This norm satis�es all the conditions of a norm space:

Proof. For N1, kTk � kT (x)k
kxk � 0. Next, kTk = 0 if and only if sup kT (x)kkxk = 0

which implies sup kT (x)k = 0: Since the supremum of non-negative numbers is
zero, therefore kTk = 0 if and only if kT (x)k = 0 for all x. This is only possible
when T is the zero operator.
For N2, k�Tk = sup

x

k�T (x)k
kxk = sup

x

j�jkT (x)k
kxk = j�j sup

x

kT (x)k
kxk = j�j kTk. In

the second step, the homogenity property is applied because of the norm of
R(T ). In the third step, the scalar can be factored out because it has no role
in the supremum since it does not depend on x.
For N3, sup k(T1 + T2) (x)k = sup kT1 (x) + T2 (x)k. Since kT1 (x) + T2 (x)k �

kT1 (x)k + kT2 (x)k and so also their supremum, thus sup kT1 (x) + T2 (x)k �
sup kT1 (x)k+ sup kT2 (x)k
From this, we can have kT1 + T2k � kT1k+ kT2k
Here�s an important conclusion from this jibber-jacky: we can collect all

bounded operators T : X �! Y and get for ourselves a norm space! This
space is called space of bounded linear operators from X to Y and is denoted
by B (X;Y ). Some important theorems result from this idea. For instance, we
can determine the completeness of the domain, given the completeness of the
range, amongst other beautiful ideas but they will have to wait, for now.
Another useful formula goes as follows:

Proposition 275 kTnk � kTkn

Proof.

kTTk
= sup kT (T (x))k
� sup kTk k(T (x))k
= kTk sup k(T (x))k
= kTk2

The proof then follows in a similar method for n by induction.

Example 276 The identity operator 1̂ : N �! N on a normed space N 6= ?
is bounded and has norm

1̂ = 1.
Example 277 The zero operator 0̂ : N �! M on a normed space N to norm
space M is bounded and has norm

0̂ = 0.
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Example 278 Let N be the normed space of all polynomials on J = [0; 1]
with norm given x = max

t2J
kx (t)k. A di¤erentiation operator T = d

dt is de�ned

on N by T (x (t)) = x0(t) where the prime denotes di¤erentiation with respect
to t. This operator is linear but not bounded. Indeed, let xn(t) = tn where
n 2 N. Then kxnk = 1 and T (x (t)) = x0(t) = ntn�1 so that kT (xn)k = n and
kT (xn)k
kxnk = n. Since n 2 N is arbitrary, this shows that there is no �xed number

c such that kT (xn)kkxnk � c. From this, we conclude that T is not bounded.

Example 279 Let T (xn) = nx for any sequence xn �! x. Then, this opera-
tor, too, is not bounded.

Example 280 For T : R3 �! R3 de�ned by T (w) = v �w, we have T (w) =
kvk kwk sin � � c kwk where c = kvk so that T is bounded.

Example 281 The integral operator T : C [0; 1] �! C [0; 1] such that

T (x (t)) =

1Z
0

k (t; �)x (�) d�

is bounded where k (t; �) is continuous on the closed interval [0; 1] � [0; 1] and
thus bounded itself.

T (�x (t) + �y (t)) =

T (�x (t) + �y (t)) =

1Z
0

k (t; �) (�x (�) + �y (�)) d�

=

1Z
0

k (t; �)�x (�) d� +

1Z
0

k (t; �)�y (�) d�

= �

1Z
0

k (t; �)x (�) d� + �

1Z
0

k (t; �) y (�) d�

= �T (x (t)) + � (Ty (t))

To show that this operator is bounded, we �rst let jk (t; �)j � c. This assumption
is justi�ed since k is bounded. Next, since x 2 C [0; 1], we can have kxk =
jx (t)j = max

t
x (t) so that

kT (x)k = max
t
kk (t; �)x (�) d�k

� max
t

1Z
0

jk (t; �)j jx (�)j d�

� c kxk

Thus, T is bounded. From kT (x)k = kxk � c we can de�ne kTk = c:
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We can even say more about the boundedness of the inverse:

Theorem 282 Let T : X �! Y be bounded, onto and linear. If there exists a
b such that kT (x)k � b kxk for all x, then T�1 exists and is bounded.

Note that the condition does not voilate the de�nition of boundedness be-
cause it has little to do with the c except that b � c
Proof. If T (x) = 0, then kT (x)k � b kxk implies 0 � b kxk but this is only
possible when kxk = 0 if and only if x = 0. Thus T (x) = 0 implies x = 0 so
that T is into, proving that T�1 exists. From T (x) = y and T�1 (y) = x and
kT (x)k � b kxk, we have kyk � b

T�1 (y) so that T�1 is bounded.
Boundedness is typical; it is an essential simpli�cation which we always have

in the �nite dimensional case, as follows.

Theorem 283 If a normed space N is �nite dimensional, then every linear
operator on N is bounded.

Proof. For �nite dimensional spaces,

kT (x)k =
X�iT (ei)


�

X
k�iT (ei)k

=
X

j�ij kT (ei)k

� c1
X

j�ij

where c1 = max
i
kT (ei)k. Next, kxk � c2

P
j�ij : Thus, we have kT (x)k �

c1
P
j�ij and kxk � c2

P
j�ij from which we have

c2 kT (x)k � c1c2
X

j�ij � c1 kxk

or kT (x)k � c kxk where c = c1=c2:

Corollary 284 In a �nite dimensional space, every linear operator is continu-
ous.

Try to prove this corollary without using the next theorem.

Theorem 285 Let T be a linear operator. Then, T is continuous if and only
if it is bounded.

Proof. Let T : X �! Y be continuous. Then, kT (x)� T (x0)kY < " whenever
kx� x0kX < �
or kT (x� x0)kY < " whenever kx� x0kX < �
Let x � x0 = "y

akykX
for a > 0: This is justi�ed since the denominator is

bounded and not equal to zero. Then,
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T ( "y

c kykX
)


Y

< ") kT (y)kY < a kykX

or kT (y)kY � c kykX for some 0 < c < a
Conversely, kT (y)kY � c kykX
Let y = x� x0 for kykX = kx� x0kX < �
Then, kT (x)� T (x0)kY < c� = " whenever kx� x0kX < �

Corollary 286 Let T : N �! M be a linear operator and N; M are normed
spaces. Then, if T is continuous at a single point, then it is continuous.

Corollary 287 xn �! x implies T (xn) �! T (x)

Proof. Let k(xn � x)k < �= kTk for n > N . Then,

kT (xn)� T (x)k
= kT (xn � x)k
� kTk k(xn � x)k
< �

Theorem 288 kerT is closed for linear, bounded T .

Proof. For a limit point x of kerT , there exists a sequence xn �! x. From
this, T (xn) �! T (x). Since T (xn) = 0, then T (x) = 0 so that x 2 kerT
Note that the de�nition of continuity implies that the inverse images of open

sets is open. This is no way implies that open sets are mapped to open sets.
Similarly, it in no way implies that closed sets are mapped to closed sets so that
for a linear bounded T , we cannot say more about R (T ).
Recall from calculus that two functions f1 and f2 are equal if f1 (x) = f2 (x)

8x 2 D (f1) = D (f2). In a similar vein, we say that two operators T1 and T2
are equal if T1 (x) = T2 (x) 8x 2 D (T1) = D (T2)
We can restrict an operator by restricting the operator to a subset A of the

domain D (T ). Only a few elements are eliminated from the domain. Conversely,
from this subset, we can go back to the domain by applying the operator to this
superset � this is the extension of the operator. At times, some elements are
added to give a new domainM � D (T ), which will leave the mapping of already
existing elements unchanged. This can give us many extensions but for practical
purposes, the extension must preserve boundedness or linearity and norm. This
is the case when D (T ) is dense inM . Needless to say, thisM must be complete.
Thus, we have the following theorem:

Theorem 289 Let X and Y be Banach spaces and let T : D (T ) �! Y be a
linear, bounded operator. Then, there exists an extension ~T : D (T ) �! Y such

that T is linear, bounded and kTk =
 ~T
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Proof. Let xn be a sequence in D (T ) convergent in X to x. Since T is linear
and bounded and Y is complete, T (xn) �! T (x) = y. De�ne ~T (x) = y. This
de�nition is independent of the choice of xn. Suppose zn �! x. Then, the
sequence vm = (x1; z1; x2; z2; :::) converges to x so that the subsequences T (xn)
and T (zn) have the same limit. Thus, the choice of sequence does not a¤ect
the uniqueness of ~T .
To show that ~T is linear, ~T (�s+ �t). Then,

~T (�s+ �t)

= lim
n!1

T (�sn + �tn)

= � lim
n!1

T (sn) + lim
n!1

�T (tn)

= � ~T (s) + � ~T (t)

Clearly, ~T (x) = T (x) for x 2 D (T ) so that ~T is a certi�ed extension of T . To
show that ~T is bounded,  ~T (x)

=
 lim
n!1

T (xn)


� lim
n!1

kTk kxnk

= kTk kxk

Thus ~T is bounded.
We have also obtained

 ~T � kTk if we divide both sides of the above

obtained inequality by kxk and take supermum over x. Trivially,
 ~T � kTk

because the norm cannot decrease in an extension. Combining, we have
 ~T =

kTk
What if X or Y is not complete? Let T 2 B (X;Y ) and let E � X be a

normed subspace. If we know what T jE is and don�t have any knowledge of
T , we can recover part of T: Intuitively, this is done by adding limit points to
domain of the restriction. Since a linear operator is continuous, the added limit
points can, in some sense, recover the operator T .

Proposition 290 T jE has a unique extension to a continuous linear mapping
de�ned on �E.

Proof. In order to avoid the cumbersome T jE , we let T jE = L. Also, this
should serve as a reminder that we�re dealing with a di¤erent operator L and
we�re looking for an extension of it, T , whose mapping we�re not sure of right
now.
If x 2 �E, then there is a Cauchy sequence xn 2 E such that xn �! x. That

is, for every � > 0, there exists N such that kxn � xmk < �= kLk for m;n > N
Then, kL (xn)� L (xm)k = kL (xn � xm)k � kLk kxn � xmk < �, imply-

ing that L (xn) is Cauchy. Since Y is complete, we have z 2 Y such that
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lim
n!1

L (xn) = z. Now, in order for the extension to be sensible, we should have

lim
n!1

L (xn) = T (x). By this justi�cation, we have T (x) = L (x) for x 2 E,

making T linear.
This de�nition will be valid if limit z is unique for all sequences in E con-

vergent to x. If yn �! x, then
L (yn) = L (yn)� L (xn) + L (xn) �! z hence L (yn)� L (xn) �! 0 so that

L (yn) = L (xn)

Next, kT (x)k =
 lim
n!1

L (xn)
 = lim

n!1
kL (xn)k � sup

kxnk=1
kL (xn)k = kLk

hence T is bounded, making it continuous.
In particular, if E is dense in X, that is, �E = X, then we can completely

determine the extension and use the previous theorem.

Problem 291 Let X and Y be normed spaces and T be a bounded, linear sur-
jective operator. Suppose that there exists a constant b > 0 such that kT (x)k �
b kxk for all x 2 X. Show that T�1 exists and is bounded

Proof. First, we will show that T�1 exists. This will need two parts. One,
that T�1 is well-de�ned. That is, it maps similar elements to similar images.
That is, x = y impliesT�1 (x) = T�1 (y). Surjectively will then imply that
R (T ) = D

�
T�1

�
so that there are no elements for which the mapping T�1

is unde�ned. This T�1 will have to be constructed, provided we can prove
that T is bijective (surjectivity is given). Now, let We can never get injectivity
from surjectivity so we resort to the norm. T (x) = 0. Then, kT (x)k = 0 and
kT (x)k � b kxk implies that b kxk � 0

=) kxk = 0
=) x = 0
Hence, T is bijective so that we can have T�1 (y) = x for y = T (x) so that

kT (x)k � b kxk
=) kyk � b

T�1 (y)
=)

T�1 (y) � c kyk where c = 1=b

Problem 292 Let T : C[0; 1] �! C[0; 1] be de�ned by

T (x (t)) = y (t) =

tZ
0

x (s) ds

Find R (T ) and T�1 : R (T ) �! C[0; 1]. Is T�1 linear? Bounded?

Here�s a motivating exercise for the next section:

Exercise 293 Let N be a Banach space and M a norm space. Let fTkg be a
sqeuence of bounded linear operators from N to M such that for each x 2 N ,
the set fTk (x)g is bounded subset of M for each k. Then, the sequence fkTkkg
of norms of Tk is also bounded
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1.17 Normed Space of Operators

As already proved, the operator of a norm satis�es all the axioms of a norm
space. Thus, the space of bounded, linear operators T : X �! Y between
vector spaces X and Y , denoted by B(X;Y ) is a norm space, without a shadow
of doubt.. but we haven�t proved that this is vector space, yet!

Exercise 294 B (X;Y ) is a vector space

In what case is this space complete i.e. Banach?

Theorem 295 If Y is a Banach space, then so is B(X;Y )

Proof. Now, remember, elements of B(X;Y ) are linear operators T so that
if we want to show that an arbitrary Cauchy sequence in B(X;Y ) converges,
we must take a sequence of operators and show that it converges. Let (Tn)
be a Cauchy sequence of operators in B(X;Y ). Thus, by de�nition, for all
� > 0, 9N such that kTn � Tmk < � whenever n;m > N . For all x 2 X and
n;m > N , we have kTn (x)� Tm (x)k = k(Tn � Tm) (x)k (point-wise addition)
� kTn � Tmk kxk (Ti�s are bounded)
Therefore, kTn (x)� Tm (x)k � kTn � Tmk kxk < � kxk. Now, for any

�xed x and given �0, we may choose � = �x such that �x kxk < �0. Then,
kTn (x)� Tm (x)k < �0, �0 > 0 and n;m > N implies Tn (x) is Cauchy in Y .
Since Y is complete, therefore there exists an element y such that the Cauchy
sequence Tn (x) �! y 2 Y . Now, the limit y depends upon the choice of
x because kTn (x)� yk �! 0. We can call this y = T (x). Thus, we have
Tn (x) �! T (x). To prove that T (x) 2 B (X;Y ), we need to show that T (x)
is linear and bounded.
Linear:
T (�x+ �y)
= lim

n!1
Tn (�x+ �y)

= lim
n!1

[�Tn (x) + �Tn (y)]

= lim
n!1

�Tn (x) + lim
n!1

�Tn (y)

= � lim
n!1

Tn (x) + � lim
n!1

Tn (y)

= �T (x) + �T (y)
Bounded:
kTn (x)� T (x)k
=
Tn (x)� lim

m!1
Tm (x)


= lim

m!1
kTn (x)� Tm (x)k

� lim
m!1

kTn � Tmk kxk
= kTn (x)� T (x)k kxk
< � kxk
That is, kTn (x)� T (x)k � � kxk. Hence the operator (Tn � T ) is bounded

and Tn � T 2 B (X;Y ). Since Tn 2 B (X;Y ) and B (X;Y ) is closed under
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addition, which you have hopefully proved above, therefore Tn � (Tn � T ) =
T 2 B (X;Y ).
We mention an important tool in passing: a corresponding theorem for func-

tionals (see next chapter) is known as the famous Hahn-Banach Theorem, with-
out which the study of functional analysis is complete.

1.18 Operators on Finite Dimensional Spaces

We have already seen that �nite dimensional spaces are much simpler than
in�nite dimensional ones in certain aspects. Of particular note is the role of
operators and functionals on such spaces. We will show this by incorporating
matrices into our discussions. For a review of matrices, see the appendix.
Recall that for an n-dimensional vector, an r � n matrix acts on it to give

a r-dimensional vector. Thus, linear operators on �nite dimensional spaces can
be viewed as matrices. Matrix operation is associative, linear and in some cases,
bounded and invertible, making it a perfect candidate for our present discussion.
We also have the added advantage of going computational.

Exercise 296 Determine the null space of the operator T : R3 �! R2 if T is
represented by the matrix �

1 3 2
�2 1 0

�
Here�s how the equivalence can be made:
Let T : X �! Y be a linear operator with X;Y normed spaces:
Let dimX = n <1 and dimY = r <1 and let basis of X be e1; e2; :::; en.

Then, every vector x in the domain can be represented using scalars �i�s such
that

x =
nX
i=1

�iei

Applying the linear operator, we get

y = T (x) =
nX
i=1

�iT (ei)

If �e1; �e2; :::; �er are the basis of the range, then every vector y can be represented
as

y =
rX
i=1

�i�ei

Now, every T (ek) is a vector in the range. Hence, this, too can be represented
as

T (ek) =
rX
i=1

ik�ei
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where �i; i are scalars in the �eld of the codomain. The scalar  will vary,
depending on the vector T (ek), which justi�es the subscript. Now, the two
representations of y should agree. That is,

y =
rX

k=1

�k�ek =
nX
i=1

�kT (ek)

This equation implicitly assumes that we can know the (unique) images of each
member of the basis of the domain. The representation of the vector T (ek) is
placed into this equation to give

y =
nX
i=1

�kT (ek) =
nX
i=1

�k

rX
i=1

ik�ei

=
rX
i=1

nX
i=1

(�kik) �ei

Now, y cannot have two di¤erent representations. We must have �i =
nP
i=1

(�kik)

for each i. This should look familiar: it is a tuple of a vector b if you perform the
matrix multiplication Ax = b=(�i). Now, if we can determine these �i�s, we
know the value of T (x). By now, it should be clear that in order to determine
the matrix equivalent A of T , we can safely say that A = (aik) = (ik). Notice
that this depends on the choice of basis for the domain so that there can be
many di¤erent matrices by changing the choice of basis of the domain.
Note that this is valid only for �nite dimensional spaces!
Let us do an example to hit the point home.

Example 297 Let�s say we have an operator that skews a vector and reduces
a dimension. That is, T (x; y; z) = (3x; 2y). To make our lives simple, we
will assume e1 = (1; 0; 0) ; e2 = (0; 1; 0) and e3 = (0; 0; 1) as our basis in both
spaces. Now, T (e1) = (3; 0), T (e2) = (0; 2) and T (e3) = (0; 0). Therefore, the
corresponding matrix is

A =

�
3 0 0
0 2 0

�
so that

A =

�
3 0 0
0 2 0

�24 x
y
z

35 = � 3
2

�
Exercise 298 Let T : R3 �! R3 be de�ned as follows: T (x; y; z) = (x; y;�x� y).
Find N (T ), R (T ) and the matrix that forms this operator.

1.19 Application: Fixed Point Theory

For a real valued function f : R �! R, a �xed point is a point x 2 R such
that f (x) = x. This can be seen as the intersection of the graph of a function
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with the line y = x. As another example, the point x = �1 for f (x) = 3x + 2
is a �xed point. There may be cases were the graph of f (x) does not intersect
with y = x or may even have more than one points of intersection. A parabola,
for instance, will usually have two. In particular, the function f (x) = x has
in�nite �xed points. Thus, a �xed point may not exist, may exist but may
not be unique. One way this idea is important is the use in �nding roots of an
equation as follows: write out f(x) = 0 in the form g (x) = x. Thus, a �xed
point of g will be the same as the root of f .

4 2 2 4
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y

4 2 2 4
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20
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x

y

An interesting problem, therefore, is the determination of the existence (and
uniqueness) of a �xed point. Of course we have no reason to limit ourselves
to the real numbers. Let (X; k:kX), (Y k:kY ) be two normed spaces and let
T : X �! Y be an operator. The subscript is a reminder of the norm being
de�ned for a particular set.

De�nition 299 T is Lipschitzian if 9 Lipschitzian constant � such that kT (x)� T (y)kY �
� kx� ykX . T is non-expansive if � = 1. T is a contractive map if
kT (x)� T (y)kY < kx� ykX . T is a contraction if � 2 (0; 1)

Note that every contraction map is contractive but the converse is not
true. T (x) = 2x is Lipschitzian for � = 2 under the usual Euclidean norm
but not non-expansive. T (x) = x is nonexpansive but not contractive since
kT (x)� T (y)kY = kx� ykX . For X = (1;1), f (x) = x + 1=x is contrac-
tive but not a contraction since jf (x)� f (y)j = j(x� y) + (1=x� 1=y)j =
jx� yj j1� 1=xyj < jx� yj
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We will now drop the vexing subscript notation.

Theorem 300 Every Lipschitz mapping is uniformly continuous.

Proof. Let � > 0. Choose � = �=�. Then, kx� yk < � =) kT (x)� T (y)k �
� kx� yk < �

Theorem 301 For X = R and usual metric d, g : R �! R is a contraction()
jg0 (x)j � � < 1 for continuous g.

Proof. ((= ) g(x)�g(y)x�y = g0 (t) for t 2 (x� y � �; x� y + �). From Mean
Value Theorem, we have jg (x)� g (y)j � � jx� yj
( =) ) jg (x+ h)� g (x)j � � jhj
We now have a look at the solution to the problem posed at the beginning

of this section.

Theorem 302 (Banach�s Fixed Point Theorem) Every contraction map T :
X �! X on a complete norm space X has a unique �xed point x.

Proof. Let x0 2 X. We need to have repeated images of T . De�ne T (x0) = x1,
x2 = T (x1) = T 2 (x0) ; ::: so that xn = Tn (x0) and xn+1 = T (xn). A routine
veri�cation will show that kxm+1 � xmk � �m kx0 � x1k. Using the triangle
inequality and the formula for the sum of a geometric progression, assuming
n > m, we can have kxm � xnk � �m

1�� kx0 � x1k. Now, � < 1 implies �
m �! 0

so that xn is a Cauchy series. Hence there exists x such that xn �! x because
of completeness.
Next, kx� T (x)k � kx� xmk+ kxm � T (x)k
� kx� xmk+�m kxm�1 � xk �! 0 so that kx� T (x)k � 0 in the limiting

case, implying T (x) = x. This is our �xed point.
If there were another �xed point y = T (y), then kx� yk = kT (x)� T (y)k �

� kx� yk, implying the contradiction � � 1
The proof covered in the lectures is for a closed space of a complete metric

space. This theorem is rather more general (every closed space of a complete
space is complete). The idea is to form a Cauchy sequence by repeatedly apply-
ing T to X. This has the e¤ect of "reducing the domain" because of the scalar
< 1 forcing T to converge to "singleton" �the �xed point. This exists since the
domain is complete. Hence, the proof is invalid if completeness is taken away.

Exercise 303 Come up with an example. Hint: use the rational numbers.

In analysis, a usual su¢ cient conidtion for the convergence of an iteration
xn = g (xn�1) is that g be continuously di¤erentiable and jg0 (x)j � � < 1.
Verify this by Banach�s �xed point theorem.
We have to show that the mapping g is contractive. Then it will have a �xed

point and hence the iteration will converge. This is a valid mode of reasoning,
as we can see from the proof of Banach�s �xed point theorem covered in the
lecture notes.
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We know that g0 (x) exists and is continuous. Thus, we have g0 (x) =
lim
y!x

g(y)�g(x)
y�x = lim

y!x

g(x)�g(y)
x�y on which we apply the mean value theorem. This

says that if f is a real continuous function on [a; b] which is di¤erentiable on
(a; b), then there is a point c 2 (a; b) such that f 0 (c) = f(b)�f(a)

b�a .

Hence for any interval, we apply MVT to get g0 (t) = g(x)�g(y)
x�y for some t.

Now, by hypothesis, 1 > � � jg0 (t)j =
��� g(x)�g(y)x�y

���
which is jg (x)� g (y)j � � jx� yj. This is the familiar d (g (x) ; g (y)) �

�d (x; y) for � < 1

Exercise 304 Show that kxm � xk � �m

1�� kx1 � x0k and kxm; xk �
�
1�� kxm � xm�1k.

For obvious reasons, the former is called prior estimate and the latter is
called the posterior estimate. The problems below will show the signi�cance of
the prior and posterior estimate.

Problem 305 Let f be a real-valued twice di¤erntiable function on the in-
terval [a; b]. Let f(x̂) = 0 for some x̂ 2 (a; b). Newton�s method de�ned as
xn+1 = g (xn) and g (xn) = xn � f(xn)

f 0(xn)
. Show that g a contraction in some

neighbourhood of x̂

Solution 306 g (x) = x + f(x)
f 0(x) =) g0 (x) = 1 = f (x) f 00 (x) = [f 0 (x)]

2
=)

lim
x!x̂

g0 (x) = 0 =) jg0 (x)j < �

What if we need to �nd x = r
p
c? That is, the solution to xr � c = 0. Let

f (x) = xr � c. Aply Newton�s formula to get xn+1 = xn +
f(xn)
f 0(xn)

= g (xn) =

1
r

�
xn +

c
xn

�
. This map is contraction with � = j1=r (1� c=xy)j

Exercise 307 Let X = [1;1) and let T : X �! X be such that T (x) = x
2 +

1
x .

Show that T is a contraction and �nd the smallest �

Solution 308 d (T (x) ; T (y)) =
���x2 + 1

x �
y
2 �

1
y

��� = ���x�y2 � x�y
xy

��� = jx� yj ��� 12 � 1
xy

��� =
�d (x; y) where � =

��� 12 � 1
xy

���. Now, what is the smallest such �? What is the
largest value of 1

xy? 1. What is the smallest? 0. Hence � � 1=2 and therefore
T is a contraction

Exercise 309 Consider an iteration process for solving f (x) = x3 + x � 1.
Form xn = g (xn�1). One way is by considering g (x) = 1� x3. Is jg0 (x)j < 1?

We can also have other forms as well. For each form, try x0 = 1. Which
converges faster? The real root is 0.682328.
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Solution 310 We have to �nd a root for f (x) = x3 + x� 1.
That is, a value of x such that x3+x�1 = 0. Now, we can have x = 1�x3,

which we call g1 (x). We, therefore have to �nd a �xed point of g1 (x). One
other form g2 (x) comes from x = 3

p
1� x. Thus, g2 (x) = 3

p
1� x. Yet another

form comes from x
�
1 + x2

�
� 1 = 0 so that x = 1

1+x2 := g3 (x). Yet another

way is given by x2 = x
1+x2 which implies g4 (x) := x =

q
x

1+x2 . In each case,

we can set up an iterative procedure as follows:

xn = g (xn�1)

A deeper look at the proof of Banach�s �xed point theorem will tell you that this
is the correct way of looking at it. Let�s start with x0 = 1. Then, g3 (1) =
0:500 = x1
Now, x2 = g3 (x1) = 0:800 = x3
g3 (x2) = 0:610
In this case, jg03 (x)j < 1 because

g03 (x) = �
2x

(1 + x2)
2

and
�
1 + x2

�2
> 1 if x 6= 0 which implies 1

(1+x2)2
< 1 which implies 2x

(1+x2)2
< 1

if x 2 (0; 1)
To apply Banach�s �xed point theorem, �rst we need to consider a domain.

Let�s take [0; 1]. This is closed subspace of a complete space and hence com-
plete. You may argue that this was created out of thin air but you can apply
Newton�s bijection method to get this domain. Since the function does not have
a derivative at the end points, therefore the open interval is justi�ed.
In the case of g01 (x) = �3x2, the absolute value 3x2 � 1 for x 2 (0; 1). Thus,

the answer to the �rst part is NO.
Now, by the discussion on jg0 (x)j < 1, a �xed point will exist by Banach�s

�xed point theorem if the domain is complete and if jg0 (x)j � � < 1 and that
g (x) is continuously di¤erentiable, which, being a polynomial, it is. The con-
vergence will depend upon the di¤erent values of �. Think of a shorter value for
� as a value that compresses the domain much faster. I will use my knowledge
of calculus to �nd � for g3 only and you will do the rest. Look at

g03 (x) = �
2x

(1 + x2)
2

as a function, say f (x). How do we �nd it�s maximum value? Take its derivative
and set it to zero.

d
dx

�
� 2x
(1+x2)2

�
=

2(3x2�1)
(x2+1)3

= 0 implies 3x2 � 1 = 0 and, therefore, x =
p
3
3 .

Put this in g03 (x) to get
2
p
3
3�

1+
�p

3
3

�2�2 = 0:649 52. This is our �:
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This part of the handouts will focus on Hilbert spaces. We have set some ter-
minology and concepts straight using our pre-established knowledge and shed-
ding light on it as well. To begin with a study of functional analysis, we will
�rst need to go through functionals and then move on to study Hilbert spaces

1.20 Functionals

Just like operators are mappings between spaces, we have functionals operating
on vector and norm spaces to their �elds.

De�nition 311 Let X be a norm space over F. Then, a functional is a
mapping f : X �! F.

Since we are chie�y concerned with real and complex �elds, functionals with
only such ranges will be considered. From now on, f; g; h,... will be used to
denote functionals. f (x) will be an element of underlying (real or complex)
�eld. The same notation D (f) and R (f) will be used to indicate domain and
range of the functional f .
Essentially, functionals are "operators" so that all the previous theorems and

de�nitions or linearity, boundedness and norm apply. We will revisit the de�n-
itions. Note that the only changes involved are those related to the di¤erence
between �elds and norm spaces.

De�nition 312 A linear functional is a functional such that

f (�x+ �y) = �f (x) + �f (y)

where � and � are any scalars and x; y are any vectors.

Needless to say, f (x) and f (y) are not vectors anymore but rather elements
of a �eld.

Exercise 313 Show that f is linear if and only if f (�x) = �f (x) and f (x+ �) =
f (x) + f (y)

De�nition 314 A linear functional is bounded if there exists a number c > 0
such that jf (x)j � c kxk :

Note the norm on f (x).
This can again give us the de�nition of the bound for a functional:

kfk = sup
x

jf (x)j
kxk

Clearly, jf (x)j � kfk kxk.

Example 315 The norm k:k : N �! R is a functional on a normed space N .
This operator is not linear. To see why, it is su¢ cient to note that k�x+ �yk �
j�j kxk+ j�j kyk but rarely equal to � kxk+ � kyk. Can you tell when the norm
becomes linear?
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Example 316 The dot product

f (x) =
nX
xivi

with a �xed vector v = (v1; v2; :::; vn) is a functional on Rn. This operator is
linear and bounded. Linearity is clear:

f (�x+ �y)

=
nX
(�xi + �yi) vi

= �
nX
xivi + �

nX
yivi

= �f (x) + �f (y)

To see why this functional is bounded, jf (x)j = k
P
xivik � kxk kvk. Here, kvk

is the required c and so kfk = kvk

Example 317 This can be extended on l2 where such a dot-product is sim-
ply extended for in�nite tuples. Linearity can be seen from the above example
whereas boundedness can be seen from the Cauchy-Schwarz inequality.

Example 318 We�ve considered the integral operator. Notice that the range
of the opeartor consisted of functions since the integral sign was without limits.
Even if there were limits, they were of an independent variable. What happens
when we have constants as limits? The integral opertor then gives us the area
under a given function. This can be rephrased as follows:

f (x (t)) :=

bZ
a

x (t) dt

is a functional that gives us the area of the region under x (t). Thus, it is easy to
see why f : C [a; b] �! R acts on a norm space to an underlying �eld. We have
already proved that this operator is linear. To prove that it is bounded, recall
that kxk = max

t
x (t). Now,

jf (x (t))j =

������
bZ
a

x (t) dt

������
� (b� a)max

t
x (t)

= c kxk

where we have used the geometric argument for area under a curve and area of
a rectangle. Here, kfk = c = b� a
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Example 319 Another functional f : C [a; b] �! R de�ned as

f (x) =

bZ
a

x (t) yo (t) dt

is linear and bounded for any yo (t) 2 C [a; b]. The proof follows the same pattern
as above.

Example 320 Yet another functional on the same space can be de�ned as
ft0 (x (t)) = x (t0), the rationale being that a polynomial can be evaluated for
a certain t0 2 [0; 1]. However, we move a step ahead and consider another
functional f : C [a; b] �! R de�ned as

f (x) = k1x (a) + k2x (b)

for some �xed k1; k2 2 R and x (t) 2 C [a; b]. We will show that this is linear.
For f (�x+ �y), we have

f (�x+ �y)

= k1 (�x (a) + �y (a)) + k2 (�x (b) + �y (b))

= �k1x (a) + k1�y (a) + k2�x (b) + k2�y (b)

= � (k1x (a) + k2x (b)) + � (k1y (a) + k2y (b))

= �f (x) + �f (y)

Furthermore,

jf (x)j = jk1x (a) + k2x (b)j
� jk1j jx (a)j+ k2 jx (b)j
� (k=2) (jx (a)j+ jx (b)j)
� k jx (t)j
� k max

t2[a;b]
jx (t)j

= k kx (t)k

where k = max (jk1j ; jk2j) and x (t) = max (x (a) ; x (b)) so that kfk exists and
can be found by varying x and thus t in kfk = sup

x

jf(x)j
kx(t)k . On the other hand,

for the former case, kft0k = sup
kxk=1

jx (t0)j = 1

Example 321 We�ve already proved that the linear operator T (xn) = nx is
not bounded. A some-what related functional is f (xn) = xi where this i is a
�xed integer. Clearly, this functional is linear. To show that it is bounded, we
show that it is continuous, instead. Recall that this is valid for operators. An
equivalent formulation is available for functionals, which you will have to prove.



1.20. FUNCTIONALS cxxix

Now, take a sequence of sequences (this might get messy) Xm which converge
to a sequence xn that is, lim

m!1
Xm = xn. Now, f (Xm) = xi (element, not

sequence) for each m, that is for each sequence Xk, we will have an xi. Apply
limits on both sides to get lim

m!1
f (Xm) = xi = f (xn) by the limit de�nition of

continuity.

Example 322 It is easy to see that the functional f : C[�1; 1] �! F de�ned
by

f (x) =

0Z
�1

x (t) dt�
1Z
0

x (t) dt

is linear. To �nd its norm, kfk = sup
kxk=1

����� 0R�1x (t) dt�
1R
0

x (t) dt

����� = 1 + 1 = 2 by
geometric arguments.

Example 323 The functional f (x) = max
t2J

x (t) is not linear since

f (x+ y) � max
t2J

x (t) + max
t2J

y (t)

However, the norm for this functional is clearly 1. Similarly,

g (x+ y) = min
t2J

[x (t) + y (t)] � g (x) + g (y)

is not linear but bounded, as well.

We will have more to say on the following but we mention this in passing: to
every space, we can de�ne an operator on that space which takes its elements
to its subspace. That is, T : V �!W where W � V . If this operator is linear,
then we have for ourselves an endomorphism. Such operators project the space
to a subspace, in a loose sense. For instance, a three dimensional vector may
be reduced to a two dimensional one or even a single dimensional vector. This
is a scalar in a practical sense of the word. To this end, we have the following
example: let f : lp �! R be a functional such that f (x) = f ((�i)) = �n for
some �xed n. This functional is linear and bounded
Proof. f (�x+ �y)
= f ((��i) + (��i))
= f ((��i + ��i))
= ��n + ��n
= �f (x) + �f (y)
Also, kfk = sup

kxk=1
j�nj � 1

If we were to de�ne a new functional from this such that g = f , then g would
no longer be linear: indeed, g (�x) = f (�x) = �f (x) = �g (x). However, since
kzk = kzk, we therefore have that kfk =

f = kgk so that g is bounded.
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De�nition 324 (Recollection) A linear functional is called continuous at
x 2 D (f) if 8� > 0, there exists � > 0 such that

kx� yk < � =) jf (x)� f (y)j < �

This is the same de�niton for function continuity except that we have taken
the liberty to invoke the norm de�ned on the given vector space and �eld.
Try to prove the following:

Exercise 325 kfnk � kfkn

Exercise 326 f is continuous if and only if f is bounded

Exercise 327 kfk obeys the properties of a norm.

This exercise is specially useful for what follows in the next chapter.

Exercise 328 If f is continuous at a single point, then it is continuous.

Exercise 329 If f is bounded and xn �! x, then f (xn) �! f (x)

Exercise 330 If f is linear, onto and bounded and there exists b > 0 such that
jf (x)j � b kxk, then f�1 exists and is bounded.

Theorem 331 Let V be a vector space over �eld F and let f : V �! F. Then,
f is either trivial (equal to 0 everywhere) or surjective.

Proof sketch. This follows since just as the image of a vector subspace under
a linear transformation is a subspace, so is the image of V under f .

Theorem 332 A linear functional is continuous if and only if its kernel is
closed

1.20.1 Dual Spaces

We now move on to another fundamental study of the subject matter. Just like
we can have for ourselves a norm space of bounded linear operators, we can have
for ourselves a space of functionals. All we do is collect bounded functionals
and have for ourselves a norm space. Hopefully, you will have proved this in the
exercise of the previous chapter.

De�nition 333 The collection of all functionals on a vector space V over F is
called the algebraic dual space V * of V .

Since these are functionals, we can use our previous knowledge of functions
to give us our addition and scalar multiplication binary operators. That is, for
f1 + f2 2 V *, then

+ : V *� V * �! V *
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and
� : F� V * �! V *

Then
+(f1; f2) = (f1 + f2) (x) = f1 (x) + f2 (x)

and
� (�; f) = (�f) (x) = � (f (x))

In this way, the additive identity is the zero function Ô (x) = 0 to give us a
vector space V *.
We can go a step further ahead and consider the algebraic dual space (V *)*

of the dual space V *, called the second algebraic dual V **. This is the space
of functionals on the dual space itself. We can move on and on but for now,
second algebraic dual spaces will su¢ ce.
Here is one purpose of considering the second algebraic dual space: we can

de�ne functionals of V * as follows: g (f). Remember, g 2 V ** and f acts as an
input variable, much like f 2 V * and acts on elements x 2 V . Just like we can
vary x to �nd di¤erent values for f (x), likewise we can vary f to �nd di¤erent
values of g. If we �x an x 2 V , then one way of de�ning g (f) is as follows:
g (f) = gx (f) = f (x), with the subscript reminding us what to do with f .
This g is linear, keeping the x �xed.

Proof. g (�f1 + �f2)
= (�f1 + �f2) (x)
= (�f1) (x) + (�f2) (x)
= � (f1 (x)) + � (f2 (x))
= �g (f1) + �g (f2)
Since V ** is the collection of linear and bounded functionals on V *, gx

really is an element of V **. Just as we have kernels or null spaces of a speci�c
mapping, that is, ker g = N (g) = fx j g (x) = 0; x 2 D (g)g ; we can also have a
null space or a kernel of the entire vector space itself. In this case,

N (V ) = fx j f (x) = 0 ;8f 2 V *g

We can of course do the same with the algebraic dual space in which every such
functional is considered. That is,

N (V *) = fx j gx (f) = f (x) = 0 ;8g 2 V **g = N (V )

This is indeed a vector subspace of V .
Proof. Let x; y 2 N (V *) such that f (x) = f (y) = 0 for any f 2 V *. Then,
f (�x+ �y) = 0 hence �x+ �y 2 N (V *)
In either case, dimN (g) and dimN (V *) � n if dimV = n. These facts

follow from the fact that both are subspaces and from the fact that dimV =
dimV * (proved later)
Notice the similarities and di¤erences between the null space of an operator

and the null space the vector space itself.
We now move to a justi�cation of that subscripted x to consider a relation-

ship between V and V **. Let us de�ne a mapping as follows and call it the
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canonical mapping: C : V �! V ** such that C (x) = gx. This mapping is
linear
Proof. C (�x+ �y)
= g�x+�y
= f (�x+ �y) 8f
= �f (x) + �f (y)
= �gx + �gy
= �C (x) + �C (y)
In mathematical literature, this mapping is also called the canonical embed-

ding of V into V **. Since this operator C is linear and takes elements from a
vector space to another vector space, we have for ourselves a vector space homo-
morphism! Provided that this mapping is bijective, we then have for ourselves
an isomorphism. The choice of the word "embedding" should be clear from the
choice of domain and range and the fact that we have a isomorphism to a subset
of the codomain. This is also stated as follows: V is embeddable into V **. The
mapping C is one-to-one provided that the functionals f are injective. i.e. if
we have two functionals g and h, then they are in�uenced because of di¤erent
elements from the domain.
Proof. Let C (x) = C (y). Then, gx = gy and f (x) = f (y) 8f =) x = y
Thus, if we limit the codomain to the range and assume that every func-

tional f on V is injective, then we have for ourselves a bijective C and thus
an isomorphism. If the codomain and the range are already the same, then we
have for ourselves an isomorphism without limiting the codomain.
This requirement is equivalent to the following: if f (x) = 0 for all f , then

x = 0 and will be proved when we have the proper machinery for it.
We have, therefore, justi�ed the following de�nition:

De�nition 334 A vector space V is said to be algebraically re�exive if it is
isomorphic to its second algebraic dual space V **.

All �nite dimensional spaces are algebraically re�exive. To prove this, you
need to prove that the canonical mapping is bijective. The proof for this fact
can wait for now, as we move on to look at some more properties for �nite
dimensional spaces.
By now, you should have had a fair idea that algebra, analysis and geome-

try go hand-in-hand and that this three-way tra¢ c often helps to bring about
surprises in each �eld. In a similar vein, we have the following de�nition:

De�nition 335 Let f : N �! R be a non-zero functional on a real normed
space N . Then, for any scalar c, we have a half space Hc = fx 2 N j f (x) = cg.

The half space is a subset of those vectors in a norm space that have a
speci�c functional value and is closed and convex. Try to prove this. The use of
the word indicates that this collection seperates N into two spaces by the law
of trichotomy: fx 2 N j f (x) � cg and fx 2 N j f (x) � cg. Of course this is
possible only if the underlying �eld is real (which in our case it is). If c = 1,
then we will call such a space a hyper space. Usually, the dimension of such
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hyperspaces is one less than its ambient space i.e. the space surrounding the
object. In our case, this space is N .
Now, just as we can have a matrix for an operator, we can have a matrix for

a functional.

De�nition 336 Let E = fe1; :::; eng be a basis of X. E*= fe�1; :::; e�ng is an
(algebraic) dual basis for the algebraic dual space X* of X.

Now this de�nition may not be exactly enlightening but was only mentioned
to set some record straight. We will justify this de�nition in the theorem that
follows but for now, let�s look at it from a computational point of view (note that
index i varies �nitely). This is important because we want to be able to �nd the
elements of a dual space. The computation follows the manner for operators.

Thus, if x =
nP
i=1

�iei, then f (x) =
nP
i=1

�if (ei) =
nP
i=1

�ie
�
i . For now, f (ei) = e�i

is just a notation but we are trying to go in accord with the de�nition given
above, as will hopefully be made clear. Notice that

�
e�1 e�2 ::: e�n�1 e�n

� 264 �1
...
�n

375 = nX
i=1

�ie
�
i

Clearly, our required 1� n matrix A is, therefore, A = (e�1i) = (f (ei)) : By the
construction principle for linear maps (above), there exists a linear functional
fi = e�i 2 E� which maps ei to 1 and the other basis vectors to 0. That is, for
each basis e�k; e

�
k (ej) = fk (ej) = �kj where �ij is the Kronecker delta function.

Thus, if we have a vector v =
nP
i=1

�iei we must have

e�k (v) = fk (v) = fk

 
nX
i=1

�iei

!
=

nX
i=1

�ifk (ei) = �k

which shows that the linear functional e�i maps every vector of X to its i-th
coordinate with respect to the basis B. In order to be able to thus say that for

all x 2 X, x =
nP
i=1

fi (x) ei, we need to show that the E* is a linearly independent

set and this will be done in the theorem below but before that, notice how the
space and its dual are connected and that this construction works for any basis
E = fe1; :::; eng :

Example 337 The dual basis for the basis (1; 0; 0) ; (0; 1; 0) and (0; 0; 1) in R3

can be found as follows: (1; 0; 0)T ; (0; 1; 0)T and (0; 0; 1)T where the superscript
T indicates the transpose of this vector. Justify it to yourself that these trans-
posed vectors do indeed form functionals and the basis for the algebraic dual of
R3
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Exercise 338 Let E = fe1; e2; e3g be a basis of R3 where

e1 = (1; 1; 1)

e2 = (1; 1;�1)
e3 = (1;�1;�1)

Find E*= fe�1; e�2; e�3g = ff1; f2; f3g and determine f1 (x) ; f2 (x) ; f3 (x) where
x = (1; 0; 0)

Theorem 339 Let X be a vector space and E = fe1; :::; eng be a basis of X.
Then, E*= fe�1; :::; e�ng = ff1; f2; :::; fng is the basis for the agebraic dual X* of
X and dimX = dimX*= n

Proof. Take any linear combination of an element of X* as
nX
i=1

�ifi (x) = 0

for any x 2 X. Set x = ej to get

nX
i=1

�ifi (ej) =
nX
i=1

�i�ij = �j = 0

so that the chosen linear combination is linearly independent. To show that
every element f 2 X* can be written in the linear combination above, observe
that

f (x) =

nX
i=1

�if (ei) =

nX
i=1

�ie
�
i

where f (ei) = e�i for any x 2 X. On the other hand, we also have

e�k (v) = fk (v) = fk

 
nX
i=1

�iei

!
=

nX
i=1

�ifk (ei) = �k

Placing this value of �k in the chosen linear combination, we get

f (x) =
nX
i=1

�ifi (x)

Since this is valid for x 2 X, we must have

f =
nX
i=1

�ifi

We have just fermented an algebraic form of a functional in terms of func-
tionals f 0is! We can now re�ne dimN (f) from � n to = n
To prepare an interesting application of this basis, we present the following

lemma
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Lemma 340 Let X be a �nite dimensional vector space. If x0 2 X has the
property that f (x0) = 0 for all f 2 X*, then x0 = 0

Proof. Take x0 =
nP
i=1

�iei. For all f 2 X*, we have 0 = f (x0)

= f

�
nP
i=1

�iei

�
=

nP
i=1

�if (ei) =
nP
i=1

�ie
�
i = 0

Since e�0i �s are linearly independent, we must have �i = 08i. Hence x0 =
nP
i=1

�iei =) x0 = 0

Exercise 341 The canonical mapping is always injective.

Solution 342 Cx (f) = Cx (g) =) f (x) = g (x) =) (f � g) (x) = 08x =)
f � g = 0 =) f = g

Thus, N (X*) = f0g for a �nite dimensional X: Note that this does not say
that N (f) = f0g for some f 2 X*. In fact, the dimension of the null space
of a functional is always less than or equal to the dimension of the space X on
which the functional is de�ned (why?).

Theorem 343 A �nite dimensional space is algebraically re�exive

Proof. We need to prove that a canonical mapping C : X �! X** is bijective.
This mapping is linear, as has been proved. Let C (x) = 0. Then, gx = f (x) = 0
for all f 2 X* implies x = 0 so that C is one-to-one. Recall that

dimX = dimX� = n

From this, we also have dimX**= dimX*= n. Thus, R (C) = X** hence C is
surjective.

Corollary 344 The second algebraic dual space of Rn is Rn

In addition to the algebraic dual space for vector spaces, we have an equiv-
alent concept, called simply dual space, for norm spaces.

De�nition 345 The collection of all functionals on a norm space N over F is
called the dual space N 0 of N .

Exercise 346 Hopefully, you will have proved that for any functional

f : N �! F

kfk satis�es the axioms of a norm space. Therefore, the dual space is also a
norm space, which you are required to prove.

Let us abuse some terminology to hit a point. Let us call N 0 = C (X;F)
where the F = R or C so that F is complete. Just like B(X;Y ) is Banach if Y
is Banach, the dual space (not algebraic) is Banach whether or not the norm
space N is Banach. We give a more general proof.
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Proposition 347 If X is a norm space and Y is a complete, then C(X;Y ),
with the norm kfk = sup

x
jf (x)j, is complete.

Proof. Suppose (fn) is a Cauchy sequence in C(X;Y ), so, as n �! 1,
kfn � fmk �! 0. In particular (fn(x)) is a Cauchy sequence in Y for each
x 2 X since kfn (x)� fm (x)k = k(fn � fm) (x)k � kfn � fmk kxk �! 0 so it
converges, say to f(x) 2 Y . It remains to show that f 2 C(X;Y ) and that
fn �! f: We have that kfn (x)� f (x)k � kfn � fk kxk �! 0 8x i.e., fn �! f
uniformly. It remains only to show that f is continuous. For this, let xk �! x
in X and let � > 0. Pick N so that �N < �. Since fN is continuous, there exists
K 2 N such that k � K

=) kfN (xk)� fN (x)k < �. Hence k � K
=) kf (xk)� f (x)k
= kf (xk)� fN (x) + fN (x)� f (x) + f (xk)� f (xk)k
� kf (xk)� fN (xk)k+ kfN (xk)� fN (x)k+ kf (x)� fN (x)k �! 0

Theorem 348 The dual space of Rn is Rn

The words of the theorem might be slightly misleading: in one case, we have
vectors whereas in the other we have functionals. How can they be equivalent?
In particular, if we interpret Rn as the space of columns of n real numbers, its
dual space is typically written as the space of rows of n real numbers. The
situation works vice versa, as well. In such a case, this transposed vector acts
as a functional, basing itself on matrix multiplication (see construction of dual
basis). We have already seen that any functional can itself be given a basis
representation and, therefore, is a vector in its own right. Thus, we need to
be looking for an isomorphism �in particular an isometric isomorphism �that
respects the structure of both spaces so that they are, in fact, equivalent.
Proof. Since Rn is both a vector and a norm space, Rn0 = Rn*. If we take
the standard basis, then any vector x 2 Rn has the representation x =

nP
i=1

�iei.

Applying f 2 Rn*, we get f (x) =
nP
i=1

�if (ei) =
nP
i=1

�ii. Then, jf (x)j =���� nP
i=1

�ii

����
�
�

nP
i=1

j�ij2
�1=2� nP

i=1

jij
2

�1=2
by Cauchy-Schwarz inequality

= kxk
�

nP
i=1

jij
2

�1=2
That is, jf(x)jkxk �

�
nP
i=1

jij
2

�1=2
for kxk 6= 0

=) sup
kxk=1

jf(x)j
kxk � sup

kxk=1

�
nP
i=1

jij
2

�1=2
=) kfk �

�
nP
i=1

jij
2

�1=2
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If we choose x = (1; 2; :::; n), then we must have equality instead of

inequality so that kfk =
�

nP
i=1

jij
2

�1=2
= kxk

Since f is linear and kfk = kxk, that is, elements in the norm space Rn0
preserve norm under f , we therefore have an isometric isomorphism between
Rn0 and Rn

Theorem 349 The dual space of l1 is l1

Similar remarks of the previous theorem apply except for one detail: in the
in�nite dimensional case, we cannot contrsuct a corresponding basis for the dual
space as our previous construction for a technical reason involving the Axiom
of Choice, which we will not mention. The following proof, nevertheless, is still
easy to understand and does not violate anything we have learned so far.
Proof. A Schauder basis for l1 is (ek) where ek = (�kj)j2N+ so that kekk = 1.
Hence we can have

x =
1X
k=1

�kek

Let l1
0
be the dual space of l1. We have to prove that l1

0
is the same as l1.

Applying f 2 l10 on x, we get

f (x) =
1X
k=1

�kf (ek)

We have such a representation because f is linear. The series converges since f
is bounded (remember that f 2 l10). Now, what can we say about the sequence
(f (e1) ; f (e2) ; f (e3) ; :::)? It, too, is bounded above since

jf (ek)j � kfk kekk = kfk

from which we get
k(f (ek))k = sup

k
jf (ek)j � kfk

hence (f (ek)) 2 l1. In a sense, we can therefore say that the mapping (ek) 7!
(f (ek)) embeds l1 to l1. We now do the converse.

Let (�k) 2 l1 such that g (x) =
1P
k=1

�k�k for a functional g on l
1 for x =

1P
k=1

�kek 2 l1. This construction can be justi�ed by appeal to the Axiom of

Choice but we will let that pass for now.
In order to prove that g 2 l10 , we need to prove that g is linear and bounded.

Linearity following by comparing

1X
k=1

�k�k = g

 1X
k=1

�kek

!
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which is only possible if g (ek) = �k. Next,

jg (x)j =
�����
1X
k=1

�k�k

����� �
1X
k=1

j�k�kj

by the triangle inequality on R and �
� 1P
k=1

j�kj
p

�1=p� 1P
k=1

j�kj
q

�1=q
by the

Hölder inequality for 1
p +

1
q = 1. Here, p = 1 and q = 1 (don�t take this

notation too seriously. It has only been mentioned for emphasis). Thus,

jg (x)j �
1X
k=1

j�kj sup
k
�k = kxk c

where c = sup
k
�k < 1 since (�k) 2 l1. Thus, g (x) is bounded and hence

g 2 l10 , proving the required converse. We�re not done yet, though. We haven�t
validated isometry, yet, so here it is:

jf (x)j =
���� 1P
k=1

�kf (ek)

���� � sup
k
jf (ek)j

1P
k=1

j�kj again by the Hölder inequality

so that jf (x)j � kxk sup
k
jf (ek)j

=) jf(x)j
kxk � sup

k
jf (ek)j

=) sup
x

jf(x)j
kxk � sup

x
sup
k
jf (ek)j

We cannot vary x on the right hand side. Thus, kfk � sup
k
jf (ek)j. We

have also seen that sup
k
jf (ek)j � kfk so that kfk = sup

k
jf (ek)j establishing the

required isometry.
As might be guessed from the proof above, dual space of lp is lq where

1
p +

1
q = 1. The proof of this fact can be seen from Lecture 18, MTH327.

Theorem 350 (Hahn-Banach Theorem) Let (X; k:k) be a normed space and
let Y � X be a subspace. For any f 2 X�, there exists ~f 2 X* such that ~f is

an extension of f ( ~f (y) = f (y) for any y 2 Y ) and
 ~f = kfk

Corollary 351 If f (x) = 0 for all f 2 X�, then x = 0

Corollary 352 Let X be a normed space and let x0 6= 0 be any element of X.
Then, there exists a linear bounded functional ~f on Xsuch that

 ~f = 1 and
~f (x0) = kx0k

Proof. Consider the subspace Y consisting of x = �x0. De�ne f on Y by
f (x) = � kx0k. f is bounded has norm kfk = 1 because jf (x)j = jf (�x0)j =
j�j kx0k = kxk
From the Hahn-Banach theorem, kfk =

 ~f = 1. Further, ~f (x0) = f (x0) =

kx0k
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Corollary 353 For every x 2 X, kxk = sup
f2X0

jf(x)j
kfk

Proof. sup
f2X0

jf(x)j
kfk � j ~f(x)j

k ~fk = kxk
1 = kxk

Conversely, jf (x)j � kfk kxk implies sup
f2X0

jf(x)j
kfk � kxk

Corollary 354 X�and X are isometric. That is, kgxk = kxk

Proof. kgxk = sup
f2X0

jgx(f)j
kfk = sup

f2X0

jf(x)j
kfk = kxk

Theorem 355 (Principle of uniform boundedness (Banach-Steinhaus))
Let (X; k:kX) be a Banach space, (Y; k:kY ) a normed space and Tn : X �! Y
a bounded operator for each n 2 N . Suppose that for any x 2 X there exists
Cx > 0 such that kTnxkY � Cx for all n. Then there exists C > 0 such that
kTnk � C for all n.

Theorem 356 If (xn) is a sequence in a Banach space and (f (xn)) is bounded
for all f 2 X 0, show that kxnk is bounded.

Proof. We will apply the uniform boundedness principle to the dual space
X*. This is complete, whether or not X is. The role of Tn will be played by
x̂n 2 X**. Recall that x̂n is de�ned as the bounded linear functional on X*
for which x̂n (f) = f (xn) (f 2 X*). The assumption that (f (xn)) is bounded
means that for any vector f in our space X* the sequence x̂n (f) is bounded.
Using the uniform boundedness principle we get that there exists C such that
kx̂nk � C for all n. From the corollary of Hahn-Banach theorem, kxnk = kx̂nk.



Pre-Hilbert Space

A Pre-Hilbert space or an inner product space is so called because it is a vector
space with an additional structure �that of the inner product. Why do we need
inner product spaces in the �rst place? We have considered generalisations of
the vector and the length of a vector but what we don�t have is a generalisation
of the ordinary dot product. Such spaces are thus richer are more important
from a geometric point of view.
Recall that the dot product is originally (a; b; c) : (x; y; z) = ax + by + cz

from which we have (x; y; z) : (x; y; z) = x2 + y2 + z2. This dot product can be
generalised and be called the inner product, as the example will show but �rst
its axioms.

De�nition 357 A vector space I over F endowed with the operation

h:; :i : I � I �! F

called the inner product, is called an inner product space or pre-Hilbert space
if 8x;y; z 2 I and � 2 F it satis�es the following axioms:-

� hx+ y; zi = hx; zi+ hy; zi

� h�x;yi = �hx;yi

� hx;yi = hy;xi

� hx;xi � 0

� hx;xi = 0 () x = 0

An inner product space I is compactly written as (I; h:; :i).

Example 358 For x;y 2 Fn where F = R or C,

hx;yi = h(x1; x2; :::; xn); (y1; y2; :::; yn)i =
nX
i=1

�xiyi

cxl
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satis�es the above conditions and hence is an inner product space. The �rst
axiom of the inner product space is satis�ed since

hx+ y; zi
= h(x1 + y1; x2 + y2; :::; xn + yn); (z1; z2; :::; zn)i
= (x1 + y1)z1 + (x2 + y2)z2 + :::+ (xn + yn)zn

= x1z1 + y1z1 + x2z2 + y2z2 + :::+ xnzn + ynzn

= (x1z1 + x2z2 + :::+ xnzn) + (y1z1 + y2z2 + :::+ ynzn)

= hx; zi+ hy; zi

Next,

h�x;yi
= h�(x1; x2; :::; xn); (y1; y2; :::; yn)i

=
nX
i=1

��xiyi = �
nX
i=1

�xiyi

= �hx;yi

Also,

hx;yi =
nX
i=1

�xiyi

=
nX
i=1

�xiyi =
nX
i=1

yi�xi

=

nX
i=1

yixi =

nX
i=1

yixi

= hy;xi

hx;xi � 0 and hx;xi = 0 () x = 0 are easy to see. Notice that in the �eld of
real numbers and for n = 3, this is the dot product of vectors, as made extensive
use of in Physics. If we let n!1, then we have the space l2:

Example 359 Let 
 be an open set.

Lp(
) = ff : f is measurable on 
 and kfkp <1g

where for 1 � p < 1 , kfkp =
�R


kfkp dx

�1=p
and kfk1 = sup

x

jf(x)j
kxk . Lp

spaces. It is from these spaces that Quantum Mechanics adopts its mechinary.
L2(�1;1) is a particular example of a space of square-integrable function.
Let�s take a close look at the special case p = 2 where our ordinary rules of
integration will be of aid withour resorting to concepts of Measure Theory. We
can de�ne a dot product of two real-valued functions as

hx; yi =
Z
x(t)y(t)dt
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If we have a domain, then the integral becomes de�nite. If we have complex-
valued functions, then the dot product becomes

hx; yi =
bZ
a

x(t)y(t)dt

To prove that this is an inner product space, see that

hx+ y; zi =

bZ
a

(x+ y) (t)z(t)dt

=

bZ
a

(x(t) + y(t)) z(t)dt

=

bZ
a

h
x(t)z(t) + y(t)z(t)

i
dt

=

bZ
a

x(t)z(t)dt+

bZ
a

y(t)z(t)dt

= hx; zi+ hy; zi

Next,

hx;yi =

bZ
a

x(t)y(t)dt

=

bZ
a

y(t)x(t)dt

=

bZ
a

y(t)x(t)dt

=

bZ
a

y(t)x(t)dt

hy;xi
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For the scaling axiom, we have

h�x;yi =

bZ
a

�x(t)y(t)dt

= �

bZ
a

x(t)y(t)dt

= �hx;yi

Postivity axioms hx;xi � 0 and hx;xi = 0 () x = 0 can similarly be proved.

By now you must have probably studied random variables in STA365. Here�s
a supplementary example:

Example 360 For random variables X and Y , the expected value of their prod-
uct is an inner product. In this case, hX;Xi = 0 if and only if Pr(X = 0) =
1(i.e.,X = 0 almost surely). This de�nition of expectation as inner product can
be extended to random vectors as well.

Recall the de�nition of a linear operator. The inner product looks linear in
the �rst argument. However, because of the axiom hx;yi = hy;xi, we don�t
have linearity in the second argument with regards to scalar multiplication. In
fact, we have 1 12 linearity, so to speak. This is called sesquilinear:

Proposition 361 Let (X,h:; :i) be an inner product space. Then, for v1;v2;v3 2
X over F and �; � 2 F, the following properties hold:-

� h�v1 + �v2;v3i = �hv1;v3i+ �hv2;v3i

� hv1; �v2 + �v3i = ��hv1;v2i+ ��hv1;v3i

Proof. For i)

h�v1 + �v2;v3i = h�v1;v3i+ h�v2;v3i
= �hv1;v3i+ �hv2;v3i

and for ii) we have

hv1; �v2 + �v3i = h�v2 + �v3;v1i
= �hv2;v1i+ �hv3;v1i
= ��hv2;v1i+ ��hv3;v1i
= ��hv1;v2i+ ��hv1;v3i
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Recall that the dot product is originally

(a; b; c) : (x; y; z) = ax+ by + cz

from which we have (x; y; z) : (x; y; z) = x2+y2+z2, which is basically k(x; y; z)k2.
In this way, we can call an inner product space I a norm space.

Example 362 For the same space Fn, we have the norm

hx;xi =
nX
i=1

xixi =
nX
i=1

jxij2 = kxk2

from the dot product of a vector with itself. Now we also see why we need
the conjugate and why the order makes sense, notwithstanding the conjugate.
If these were real numbers, of course jxij2 = xi, which brings us back to the
Euclidean norm and, of course, the usual metric.

Example 363 For inner product space L2[a; b], we also have a norm induced
from the dot product:

hx;xi

=

bZ
a

x(t)x(t)dt

=

bZ
a

jx(t)j2 dt

= kxk2

It has already been proved that this norm makes L2[a; b] a normed space.

And now for the theorem itself.

Theorem 364 Every inner product space is a normed space

Proof. For k:k : V � V �! F, de�ne kxk =
p
hx;xi. This is justi�ed since

h:; :i : V � V �! F carries the same "structure" as h:; :i : V � V �! F
Let V be an inner product space over F.
8 � 2 F and x;y 2 V
By default, hx;xi � 0 and hx;xi = 0 () x = 0 =)

p
hx;xi � 0 andp

hx;xi = 0 () x = 0
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Next,

k�xk =
p
h�x; �xi

=
p
�hx; �xi

=
p
���hx;xi

=

q
j�j2 hx;xi

= j�j
p
hx;xi

= j�j kxk

Finally,

kx+ yk2 = hx+ y;x+yi
= hx;x+ yi+ hy;x+ yi
= hx;xi+ hx;yi+ hy;xi+ hy;yi
= kxk2+hx;yi+ hy;xi+ kyk2

=
���kxk2+hx;yi+ hy;xi+ kyk2���

�
���kxk2���+ jhx;yij+ jhy;xij+ ���kyk2���

= kxk2 + jhx;yij+ jhy;xij+ kyk2

= kxk2 + jhx;yij+
q
hy;xihy;xi+ kyk2

= kxk2 + jhx;yij+
q
hx;yihx;yi+ kyk2

= kxk2 + jhx;yij+
q
hx;yihx; yi+ kyk2

= kxk2 + jhx;yij+ jhx;yij+ kyk2

= kxk2 + 2 jhx;yij+ kyk2

� kxk2 + 2 kxk kyk+ kyk2

= (kxk+ kyk)2

i.e.

kx+ yk2 � (kxk+ kyk)2

=) kx+ yk � kxk+ kyk

The converse is not true in general since an additional structure is needed.
A counter example is the space C[0; �=2] for a norm

kfk = Sup
x2[0;�=2]

jf(x)j

However, what we can do is we can make use of the following to "retrieve"
an inner product corresponding to a norm on the complex (and hence real)
numbers.
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Theorem 365 (Polarization identity) In a Complex Inner Product Space,
that is, an inner product space with the underlying �eld F = C, we have

hx; yi = 1

4

�
kx+ yk2 � kx� yk2

�
+
i

4

�
kx+ iyk2 � kx� iyk2

�
Proof.

kx+ yk2 � kx� yk2

= hx+ y; x+ yi � hx� y; x� yi
= 2 hx; yi+ 2 hy; xi

From which we have kx+ iyk2 � kx� iyk2 = 2 hx; iyi+ 2 hiy; xi
From

4 hx; yi = 2 hx; yi+ 2 hx; yi
= 2 hx; yi+ 2 hx; yi � 2 hy; xi+ 2 hy; xi
= 2 hx; yi+ 2 hy; xi+ 2 hx; yi � 2 hy; xi
= 2 hx; yi+ 2 hy; xi � i22 hx; yi+ 2i2 hy; xi
= 2 hx; yi+ 2 hy; xi+ 2i hx; iyi+ 2i hiy; xi

= kx+ yk2 � kx� yk2 + i
�
kx+ iyk2 � kx� iyk2

�
If we have a real space, then the imaginary part will equal to zero and

2 hx; yi + 2 hy; xi = 4 hx; yi because in a real space, conjugate of a real number
is equal to the real number. That disposes of the C and R but more generally,
we have the following:

Theorem 366 The norm on an inner product space satis�es the parallelogram

equality kx+ yk2 + kx� yk2 = 2
�
kxk2 + kyk2

�
Proof.

kx+ yk2 + kx� yk2

= hx+ y; x+ yi+ hx� y; x� yi
= hx; x+ yi+ hy; x+ yi+ hx; x� yi � hy; x� yi
= hx; xi+ hx; yi+ hy; xi+ hy; yi+ hx; xi � hx; yi � hy; xi+ hy; yi
= hx; xi+ 0 + 0 + hy; yi+ hx; xi+ hy; yi

= 2
�
kxk2 + kyk2

�
We repeat: not every norm space satis�es the parallelogram equality. We,

therefore, have the following exercises, the �rst part of which has already been
done:
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Exercise 367 A normed space X is an inner product space if and only if it
satis�es the parallelogram law for every pair of vector.

Exercise 368 The polarization identity is valid for any norm space if the norm
space satis�es the parallelogram law.

The basic idea is to get an inner product from the given norm space, provided

that kx+ yk2+kx� yk2 = 2
�
kxk2 + kyk2

�
. Let 4 hx; yi = kx+ yk2�kx� yk2.

Since the norm is well-de�ned function of one variable, we can �rst view this
as a function of x keeping y �xed. This works if the underlying �eld is that
of the real numbers since the norm is a function from a vector space to the
set of non-negative reals. Try to accomplish this �rst so that you might get
an idea of where to tweak this de�nition to work for the complex �eld. The
theorems/exercises that follow might be of help but good luck trying to do this
exercise without what follows.

Lemma 369 Let I be an inner product with a corresponding norm. For x;y 2
I, the space satis�es the Cauchy-Schwartz inequality jhx;yij2 � hx;xihy;yi
Proof. For y = 0; hx;0i = hx;x� xi = hx;xi � hx;xi = 0
Let � 2 F. For y 6= 0;

hx� �y;x��yi � 0

) hx;x� �yi � �hy;x� �yi � 0
) hx;xi � ��hx;yi � � [hy;xi � ��hy;yi] � 0

For �� = hy;xi
hy;yi , we have

hx;xi � ��hx;yi � � [hy;xi � hy;xi]

= hx;xi � hy;xi
hy;yi hx;yi � 0

) hx;xi � hx;yi
hy;yi hx;yi

= hx;xi � jhx;yij
2

hy;yi � 0

) hx;xi � jhx;yij2

hy;yi
) hx;xihy;yi � jhx;yij2

) jhx;yij2 � hx;xihy;yi
If x = �y, then

hx� �y;x� �yi
= h�y � �y; �y � �yi
= h0;0i
= 0
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or

hx� �y;x� �yi = 0

=) hx;x� �yi � �hy;x� �yi = 0
=) hx;xi � ��hx;yi � � [hy;xi � ��hy;xi] = 0

Again, for �� = hy;xi
hy;yi , we have

hx;xi � hy;xi
hy;yi hx;yi = 0

=) hx;xi � hx;yi
hy;yi hx;yi

= hx;xi � jhx;yij
2

hy;yi = 0

=) hx;xi = jhx;yij2

hy;yi
=) jhx;yij2 = hx;xihy;yi

i.e. equality will hold if the vectors are multiples of each other.

Proposition 370 (Appolonius�s Identity) kz � xk2+kz � yk2 = 1
2 kx� yk

2
+

2
z � 1

2 (x+ y)
2

Proof.

hz � x; z � xi+ hz � y; z � yi

=
1

2
hx� y; x� yi+ 2

�
z � 1

2
(x+ y) ; z � 1

2
(x+ y)

�
=)

hz; z � xi � hx; z � xi+ hz; z � yi � hy; z � yi

=
1

2
hx; x� yi � 1

2
hy; x� yi+ 2

�
z; z � 1

2
(x+ y)

�
� 2
2

�
x+ y; z � 1

2
(x+ y)

�
=)

hz; zi � hz; xi � hx; zi+ hx; xi+ hz; zi � hz; yi � hy; zi+ hy; yi

=
1
2 hx; xi �

1
2 hx; yi �

1
2 hy; xi+

1
2 hy; yi+ 2hz; zi�

2
2 hz; x+ yi �



x; z � 1

2 (x+ y)
�
�


y; z � 1

2 (x+ y)
�

=)

�hx; zi � hx; zi+ 1
2
hx; xi � hz; yi � hz; yi+ 1

2
hy; yi

= �1
2
hx; yi � 1

2
hx; yi � hz; (x+ y)i �

�
x; z � 1

2
(x+ y)

�
�
�
y; z � 1

2
(x+ y)

�
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=)

�2Re hx; zi+ 1
2
hx; xi � 2Re hz; yi+ 1

2
hy; yi

= �Re hx; yi � hz; (x+ y)i � hx; zi+ 1
2
hx; (x+ y)i � hy; zi+ 1

2
hy; x+ yi

=)

�2Re hx; zi+ 1
2
hx; xi � 2Re hz; yi+ 1

2
hy; yi

= �Re hx; yi � hz; xi � hz; yi � hx; zi+ 1
2
hx+ y; xi � hy; zi+ 1

2
hx+ y; yi

=)

�2Re hx; zi+ 1
2
hx; xi � 2Re hz; yi+ 1

2
hy; yi

= �Re hx; yi � hz; xi � hz; yi � hx; zi+ 1
2
hx; xi+ 1

2
hy; xi � hy; zi+ 1

2
hx; yi+ 1

2
hy; yi

=)

�2Re hx; zi � 2Re hz; yi
= �Re hx; yi � 2Re hx; zi � 2Re hy; zi+Re hx; yi

=)
0 = 0

Proposition 371 In an inner product space, if hx;ui = hx;vi for all x, then
u = v

Proof.

hx;ui � hx;vi = 0

=) hx;u� vi = 0 8x

if x = u� v, then

hu� v;u� vi = 0

=) u� v = 0
=) u = v

Proposition 372 Under the inner product space Rn, kxk = kyk =) hx+ y;x� yi =
0
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Proof.

hx+ y;x� yi = hx;x� yi+ hy;x� yi
= hx;xi � hx;yi+ hy;xi � hy;yi
= (hx;xi � hy;yi) + (�hx;yi+ hy;xi)
= (hx;xi � hx;xi) + (�hx;yi+ hx;yi)
= 0

De�nition 373 Two elements x;y of an inner product space are orthogonal
if hx;yi = 0.

This is written as x ? y. If, furthermore, the norm of the two elements is
1, then the two are said to be orthonormal to each other. Two inner product
spaces A and B are orthogonal if 8x 2 A and 8y 2 B, x ? y: This is written as
A ? B. Also, we de�ne M? = fx 2M : x ?Mg. Note that M itself does not
have to be a vector space.

Exercise 374 M? is a subspace

If M is a subspace, M ? M?; that is, h0; 0i = 0 implying that 0 2 M?,M
we have M \M? = f0g

Theorem 375 For any subset M of an inner product space I, the set M? is a
closed subspace of I

Proof. For any two scalars �,� 2 K, and two elements x, y 2 M?, we have
h�x+ �y; zi = � hx; zi+� hy; zi = 0 for every z 2M . This means that �x+�y 2
M?. We next prove a stronger statement than closedness viz. completeness.
Let fxng be a convergent Cauchy sequence in M?. If I was not complete, then
for any limit point x of M? and for any xn �! x and from the continuity of

the inner product, we have hx; yi =
D
lim

n�!1
xn; y

E
= lim

n�!1
hxn; yi = 0 for every

y 2M . This shows that x 2M?, and thus M? is complete hence closed.

Lemma 376 If X is a closed subspace of E, then X?? = X
Proof. Clearly X � X??. If X 6= X??, then there exist a non-zero vector
u 2 X?? such that u 2 X?. It follows that hu; ui = 0 or u = 0 which is a
contradiction. Hence X = X??.

A subspace X of E will, thus, be called closed when X = X??.

Theorem 377 An orthonormal set is linearly independent

Proof. Let fe1; e2; :::; eng be orthonormal. Consider �1e1+�2e2+:::+�nen = 0
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Then, for any j 2 In*
nX
i=1

�iei; ej

+
= 0

=)
nX
i=1

�i hei; eji = 0

=) �j hej ; eji = 0
=) �j = 0

Since j is arbitrary, therefore �1e1 + �2e2 + :::+ �nen = 0
=) �1 = �2 = ::: = �n = 0

De�nition 378 Let I be a Inner Product space and B � I. B is an ortho-
normal system of I if kxk = 1 8x 2 B and x ? y 8x;y 2 B

A great advantage of orthonormal sequences over arbitrary linearly indepen-
dent sequence is the following: if we know that a given x can be represented
as a linear combination of some elements of an orthonormal sequence, then the
orthonormality makes the actual determination of the coe¢ cients very easily. In
fact (e1; e2; :::) is an orthonormal sequence in an inner product space X and we
have x 2spanfe1,...eng where n is �xed, then by the de�nition of the span. Thus,

x =

nX
k=1

�kek (1.3)

and if we take inner product by a �xed ej , we obtain

hx; eji =
DX

�kek; ej

E
=
X

�k hek; eji = �j (1.4)

With these coe¢ cients, above equation becomes

x =

nX
k=1

hx; eki ek

This is Parvesal�s identity, an important application of which is the Fourier
series expansion of speci�c functions. In fact, hx; eki are called the Fourier
coe¢ cients.
This shows that the determination of the unknown coe¢ cients in 1.3 is sim-

ple. Another advantage of orthonormality becomes apparent if in 1.3 and 1.4,
we want to add another term �n+1en+1, to take care of

ex = x+ �n+1en+1 2 span fe1; :::; en+1g

then we need to calculate only one more coe¢ cient since the other coe¢ cients
remain unchanged.
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Theorem 379 Nonzero pairwise orthogonal vectors are linearly independent

Proof. Suppose that the non-zero vectors v1; v2; :::; vk are all orthogonal to
each other. Set up a dependency relation
0 = �1e1 + �2e2 + :::+ �kek.
=) hvj ; 0i = hvj ; �1v1 + �2v2 + :::+ �kvki
=) 0 = �1 hvj ; v1i+ �2 hvj ; v2i+ :::+ �j hvj ; vji+ :::+ �n hvj ; vki
=) 0 = 0 + 0 + :::+ �j hvj ; vji+ 0 + :::+ 0
=) 0 = �j hvj ; vji
Since no hvj ; vji can be 0 (no vj is 0), therefore �j = 0 for each �j . Since the

�i�s were the coe¢ cients of the dependency relation for v1; v2; :::; vk, the vectors
v1; v2; :::; vk are linearly independent.
We state the following as an exercise:

Exercise 380 Let fxn j n = 1; 2; 3; :::g be an orthonormal sequence. The the
following statements are equivalent.

Theorem 381 1. fxn j n = 1; 2; 3; :::g is maximal (that is, it is not a proper
subset of any orthonormal set)

2. If �n = hh; xni = 0, for all n then h = 0.

3. (Fourier expansion) For all h 2 H we have h =
1X
n=1

�nxn

4. (Parseval�s relation) For all h; g 2 H we have hh; gi =
1X
n=1

�n�n

5. (Bessel�s equality) For all h 2 H we have khk2 =
1X
n=1

j�nj2

Here, �n = hh; xni and �n = hg; xni
Thus, orthogonal vectors may be taken as basis. It is important to see

that for any orthogonal basis (xn)n2N, we can have an orthonormal series:�
xn
kxnk

�
n2N

. In fact, a maximal orthonormal sequence is called an orthonor-

mal basis.

Theorem 382 (Pythagorean formula) If x1::::::xn are orthonormal vectors
in an inner product space, then


nX
k=1

xk


2

=
nX
k=1

kxkk2 (1.5)
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Proof. If x1 ? x2, then

kx1 + x2k2

= hx1 + x2;x1+x2i
= hx1;x1+x2i+ hx2;x1+x2i
= hx1;x1i+hx1;x2i+hx2;x1i+hx2;x2i
= kx1k2 + 0 + 0 + kx2k2

= kx1k2 + kx2k2

This is the famous Pythagorean Theorem in n-dimensions since the vector
x is left as it is, without resorting to tuples. Also, if any two vectors (be they
sequences, functions or ordinary lines) are orthogonal, then this identity will
hold. The identity can be extended to m mutually orthogonal vectors:

hxi;xji = kij�ij for 1 � i; j � m

�ij =

�
1 i = j
0 i 6= j

is the Kronecker delta "function" and the constant kij depends on the vectors
xi and xj . Now,

kx1 + x2 + :::+ xmk2

= hx1 + x2 + :::+ xm;x1 + x2 + :::+ xmi
= hx1;x1 + x2 + :::+ xmi+ hx2;x1 + x2 + :::+ xmi+ :::+ hxm;x1 + x2 + :::+ xmi
= hx1;x1i+ hx1;x2i+ :::+ hx1;xmi+ hx2;x1i+ :::+ hx2;xmi+ :::+ hxm;xmi
= hx1;x1i+hx2;x2i+ :::+hxm;xmi
= kx1k2 + :::+ kxmk2

Theorem 383 The inner product is continuous

Proof. Let lim
n!1

xn = x and lim
n!1

yn = y be two convergent sequences in

an inner product space I. Then, 9N1 such that kyn � yk < �
2kxnk whenever

n > N1 and 9N2 such that kxn � xk < �
2kyk whenver n > N2. Needless to say,

these inequalities are valid 8� > 0.
In order to establish continuity of the inner product, we need to prove that

lim
n!1

hxn; yni = hx; yi just like lim
n!1

f (xn) = f (x) : In other words, we need to
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prove that the sequence hxn; yni converges to hx; yi :

jhxn; yni � hx; yij
= jhxn; yni � hxn; yi+ hxn; yi � hx; yij
� jhxn; yni � hxn; yij+ jhxn; yi � hx; yij
= jhxn; yn � yij+ jhxn � x; yij
� kxnk kyn � yk+ kxn � xk kyk
< kxnk

�

2 kxnk
+

�

2 kyk kyk

= �

i.e. jhxn; yni � hx; yij < � whenever n > N where N = max (N1; N2)

Corollary 384 If lim
n!1

xn = x in a inner product space and y ? xn, then

y ? x

Proof. lim
n!1

hxn;yi = hx;yi
=) 0 = hx;yi
=) y ? x
Just like subspaces for vectors, we have subspaces for inner product spaces

where the inner product is restricted to the vectors of the subspace.

Theorem 385 Every subset of a separable inner product space is separable.

Not every sequence in an inner product space converges. In fact, there is a
criterion under which any sequence xn converges in an inner product space.

Exercise 386 If lim
n!1

kxnk = kxk and lim
n!1

hxn; xi = hx; xi = kxk2, then
lim
n!1

xn = x



Hilbert Spaces

De�nition 387 A complete inner product space is known as a Hilbert Space.

Needless to say, every Hilbert Space is a Banach space. One only needs to
prove that every Cauchy sequence in a Hilbert space converges under the norm
kxk =

p
hx;xi:

Hilbert spaces are named after the German mathematician David Hilbert
(January 23, 1862 �February 14, 1943).
Recalling the fact that every metric space can be completed, we can similarly

complete an inner product space and make it into a Hilbert space. Similar to
isometry, the isomorphism of inner product spaces is de�ned as follows:

De�nition 388 Two inner product spaces (X1; h:i1) and (X2; h:i2) are isomor-
phic if there exists a bijective linear operator T : X1 �! X2 such that

hT (x) ; T (y)i2 = hx; yi1
Such a mapping is called an isomorphism.

Being bijective and having a similar dot product guarantees that the Inner
Product spaces are the same, except for the labelling of points. Since from inner
product we can have norms and from norms we can have metrics, therefore, T
is also an isometry of X1 onto X2: In particular, for isomorphism T , we have
hT (x) ; T (x)i = kT (x)k2 = hx; xi = kxk2. Hence kT (x)k = kxk

Exercise 389 Show that every isometry is one-to-one.

A particular case of the completion of metric spaces, we have the following:

Exercise 390 For every inner product space I, there exists a Hilbert space H
and an isomorphism T : I �! A where �A = H: The space H is unique except
for isomorphisms.

Theorem 391 Let H be a Hilbert space with an orthonormal system

S = fen : n 2 Ng

and let x 2 H. Then,
1X
n=0

jhen; xij2 � kxk2

clv
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Proof. Let xk := x�
kX

n=0

hen; xi en 8k 2 N, then

hxk; eni

=

*
x�

kX
n=0

hen; xi en; en

+

= hx; eni �
*

kX
n=0

hen; xi en; en

+

= hx; eni �
"

kX
n=0

hen; xi
#
hen; eni

= 0 8n = 0; :::; k

Hence xk ? en and xk ?
kX

n=0

hen; xi en

By Pythagoras theorem,

kxk2 = kxkk2 +


kX
n=0

hen; xi en


2

= kxkk2 +
kX

n=0

jhen; xij2 kenk2

= kxkk2 +
kX

n=0

jhen; xij2

�
kX

n=0

jhen; xij2

i.e.,
1X
n=0

jhen; xij2 � kxk2 : This is the famous Bessel�s inequality.

Theorem 392 Let H be a separable Hilbert space and S = fen : n 2 Ng be an
orthonormal system. Then, the following are equivalent

1. S is an orthonormal basis

2. x ? S implies x = 0 8x 2 H

3. x =
1X
n=0

hen;xien 8x 2 H

4. hx:yi =
1X
n=0

hx;eni hen;yi 8x;y 2 H
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5. kxk2 =
1X
n=0

jhen;xij2 8x 2 H

Proof. �1.=)2.�
Let x ? S for any x 2 H. If x 6= 0 or x

kxk 6= 0, then hen; x
kxk i = 0 =)

x
kxk 2 S i.e. S is not an orthonormal system rather S [ f x

kxkg is which is a
contradiction
�2.=)3.�
To prove that x =

1X
n=0

hx;enien 8x 2 H converges, consider

*
ei;x�

1X
n=0

hx;eni en

+
8i

= hei;xi �
*
ei;

1X
n=0

hx;enien;
+

= hei;xi �
" 1X
n=0

hx;eni
#
hei; eni

= hei;xi � hx;eii
= 0

Since ei 6= 0 8i; therefore x�
1X
n=0

hx;eni en = 0

or x =
1X
n=0

hx;eni en

�3.=)4.�

hx:yi =

* 1X
n=0

hx;eni en;
1X
n=0

hy;eni en

+

=
1X
n=0

hx;eni hy;eni hen; eni

=
1X
n=0

hx;eni hen;yi

�4.=)5.�
Set x = y in 4
�5.=)1.�
Suppose S is not an orthonormal basis. Then, 9 x 2 H such that kxk = 1

and S [ fxg is an orthonormal system.

But since kxk2 =
1

1 =
X
n=0

jhen;xij2 and x is orthonormal to en 2 S, then

1 = 0 which is absurd.
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Just like subspaces for inner product spaces and vector spaces, we can have
subspaces for Hilbert spaces. However, a subspace of a Hilbert space need not
be complete. All the theorems of completeness and subspaces are applicable
here. In particular,

Exercise 393 Every subspace of a Hilbert space is complete if and only if the
subspace is closed.

Exercise 394 Every �nite dimensional subspace of a Hilbert space is complete.

Lemma 395 (Minmising Vector) Let M be a closed subspace in a Hilbert
space I. For any point x 2 InM there is unique point y 2 M which is nearest
point to x. The vector x� y is orthogonal to M .

Proof. Let d be the greatest lower bound for the distances d(x; y) where y 2M .
We can �nd yn 2M so that d(x; yn) < d+ 1

n . Consider the parallelogram with
vertices yn, x, ym, yn + ym � x. We have

2 kx� ynk2 + 2 kx� ymk2 = kyn � ymk2 + 4
x� yn + ym

2

2
Since the �rst two lengths are < d+ 1

n and the last one is � d, we obtain

jyn � ymj2 < 4(d+
1

n
)2 � 4d2 = 8d

n
+
4

n2

We see, that d(yn; ym) �! 0 when n �! 1. Therefore, fyng is a Cauchy
sequence. But I 0 is closed, hence complete, and the sequence fyng has a limit
y. For this y we have d(x; y) = d.
Let now w be any vector from M . We show that hx� y; wi = 0 Assume

the contrary. Multiplying w by the appropriate scalar, we can assume that
hx� y; wi is real. Consider the function of the real variable t given by f(t) =
d(x; y + tw)2. By de�nition, this function has a minimum at t = 0, hence
f 0(0) = 0. On the other hand, we have

f(t) = (x� y � tw)2 = d2 + 2t(x� y; w) + t2 kwk2

and f 0(0) = (x� y; w) = 0:

Theorem 396 Let I be an Inner product space andM � I be a closed subspace.
Then I =M �M?.

Proof. By the above geometric lemma, consider any x 2 I. If x =2 M , let x0

be the nearest point to x in M . If x 2 M , put x0 = x. In both cases we have
x = x0 + x00 where x 2 I 0, x00 2M?:

Theorem 397 (Riesz�s Theorem) Every bounded linear functional on a Hilbert
space H can be represented in terms of the inner product. That is, f (x) = hx; zi
where z depends upong f and is uniquely determined by f and has norm kzk =
kfk
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Proof. We prove that (a) f has the stated representation (b) z is unique and
(c) kzk = kfk
(a) if f = 0, then we have the trivial relation for z = 0. Let f 6= 0. To

motivate the idea of the proof, let us ask what properties z must have if the
stated representation exists. First, z 6= 0 for otherwise f = 0. Second, hx; zi = 0
for all x for which x 2 ker f . Hence z ? ker f . This suggests that we consider
ker f and its orthogonal complement ker f?

We have already seen that ker f is a vector space and is closed. Further-
more, f 6= 0 implies ker f 6= H so that ker f? 6= f0g by the projection the-
orem. Hence ker f? contains z0 6= 0. We set v = f (x) z0 � f (z0)x where
x 2 H is arbitrary. It is easy to see that v 2 ker f . Since z0 ? ker f , we have
0 = hv; z0i = hf (x) z0 � f (z0)x; z0i = f (x) hz0; z0i� f (z0) hx; z0i. Noting that
kz0k2 = hz0; z0i 6= 0, we can solve for f (x). The result is f (x) = f(z0)

hz0;z0i hx; z0i.

That is, z = f(z0)
hz0;z0iz0. Since x 2 H was arbitrary, we have proved the represen-

tation.
(b) Suppose that f (x) = hx; z1i = hx; z2i. Then, hx; z1 � z2i = 0 for all x.

Hence z1 = z2.
(c)With x = z, we obtain kzk2 = hz; zi = f (z) � kfk kzk so that kzk � kfk
Conversely, jf (x)j = jhx; zij � kxk kzk by the Cauchy-Schwarz inequality so

that kfk = sup
kxk=1

jhx; zij � kzk

1.21 Classi�cation of Hilbert Spaces

Hilbert spaces can be classi�ed, up to isometric isomorphism, according to their
dimension. Recall also that the dimension of a Hilbert space and hence a vector
space is a well-de�ned concept, i.e. all orthonormal bases of an Hilbert space
share the same cardinality. The classi�cation theorem we describe here states
that two Hilbert spaces H1 and H2 are isometrically isomorphic if and only if
they have the same dimension, i.e. if and only if an orthonormal basis of H1 has
the same cardinality of an orthonormal basis of H2. This will be achieved by
proving that every Hilbert space is isometrically isomorphic to an l2(X) space,
where X has the cardinality of any orthonormal basis of the Hilbert space in
consideration.

Theorem 398 Let H be a separable Hilbert space. If H is in�nite dimensional
then H is isomorphic to l2.

Proof. Let (xn) be a complete orthonormal sequence in H. If H is in�nite
dimensional, then (xn) is an in�nite sequence. Let x be an element of H.
De�ne T (x) = (�n), where �n = hx; xni, n = 1; 2; : : : : T is one to one mapping
from H onto l2. It is clearly linear. Moreover, for �n = hx; xni, x,y 2 H, n 2 N,
we have

hT (x); T (y)i = h(�n); (�n)i
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=
1X
n=1

�n�n =
1X
n=1

hx; xni hy; yni

=
1X
n=1

hx; hy; xnixni =
*
x:

1X
n=1

hy; xnixn

+
= hx; yi

Thus, T is an isomorphism from H onto l2.

Corollary 399 Suppose H is an Hilbert space and let I be a set that indexes one
(and hence, any) orthonormal basis of H. Then, H is isometrically isomorphic
to l2(I) .

Theorem 400 (Classi�cation of Hilbert Spaces) Two Hilbert spaces H1 and
H2 are isometrically isomorphic if and only if they have the same dimension.

Proof. =) If the Hilbert spaces H1 and H2 are isometrically isomorphic, with
isometric isomorphism U , then if feigi2I is an orthonormal basis for H1 than
fUeigi2I is an orthonormal basis for H2. Hence, H1 and H2 have the same
dimension.
(= If the Hilbert spaces H1 and H2 have the same dimension, then we can

index any orthonormal basis of H1 and any orthonormal basis of H2 by the
same set I. Using Theorem 398 we see that H1 and H2 are both isometrically
isomorphic to l2(I). Hence H1 and H2 are isometrically isomorphic.

1.22 Tensor Products of Hilbert Spaces

Just as we can form bigger vector spaces from smaller ones, we can form bigger
Hilbert spaces from smaller ones.

De�nition 401 Let H1 and H2 be two Hilbert spaces of dimension n and k
respectively. Given two vectors (x1; x2; :::; xn) 2 H1 and (y1; y2; :::; y3) 2 H2.
The tensor product 
 of x and y, written compactly as x 
 y, or even xy is
de�ned as

x
 y := (x1y1; x1y2; :::; x1yk; x2y1; x2y2; :::; x2yk; :::; xny1; xny2; :::; xnyk)

One can even take the tensor product of two spaces altogether to form a
"bigger" space by taking the tensor of each element of the former space with
each element of the latter space i.e. H1 
 H2 = fx 
 y; x 2 H1; y 2 H2g:
This construction accounts for a system of particles..If, however, one wishes to
break a Hilbert space into its constituent orthogonal spaces, then one considers
the direct sum of two spaces. If �nitely many Hilbert spaces H1;H2; :::;Hn are
given, one can construct their direct sum. Formally, this is done as follows. Let
H1 and H2 be two Hilbert spaces over a Field F. The Cartesian product H1�H2

can be given a space structure by using the direct sum H1 �H2 and then turn
this into a Hilbert space by de�ning the inner product as

h(x1; x2; :::; xn) ; (y1; y2; :::; yn)i = hx1; y1i+ hx2; y2i+ :::+ hxn; yni
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and
� (x;y) = (�x;�y)

Proposition 402 Let H1;H2;H3 be Hilbert spaces of dimension n, k and m
respectively, over a �eld F. For � 2 F, y;y0 2 H1, x;x0 2 H2 and w 2 H3

� (x
 y)
w = x
 (y 
w)

� �(x
 y) = (�x)
 y = x
 (�y)

� (x+ x0)
 y = (x
 y)+ (x0 
 y)

� x
 (y + y0) = (x
 y) + (x
 y0)

Proof. (x
 y)
w
= (x1y1; x1y2; :::; x1yk; x2y1; x2y2; :::; x2yk; :::; xny1; xny2; :::; xnyk)
(w1; w2; :::; wm)

=

0BBBBBBBBBBBBBBBBBBB@

x1y1w1; x1y2w1; :::; x1ykw1;
x2y1w1; x2y2w1; :::; x2ykw1; :::;
xny1w1; xny2w1; :::; xnykw1;
x1y1w2; x1y2w2; :::; x1ykw2;

x2y1w2; x2y2w2; :::;
x2ykw2; :::;

xny1w2; xny2w2; :::;
xnykw2;

...
x1y1wm; x1y2wm; :::; x1ykwm;
x2y1wm; x2y2wm; :::; x2ykwm; :::;
xny1wm; xny2wm; :::; xnykwm

1CCCCCCCCCCCCCCCCCCCA

=

0BBBBBBBBBBBBBBBBBBBBB@

x1 (y1w1) ; :::;
x1 (ykw1) ; x2 (y1w1) ; :::;
x2 (ykw1) ; :::; xn (y1w1) ; :::
xn (ykw1;) ; x1 (y1w2) ; :::;
x1 (ykw2) ; x2 (y1w2) ; :::;

x2 (ykw2) ; :::; xn (y1w2) ; :::;
xn (ykw2;)

...
x1 (y1wm) ; :::;

x1 (ykwm) ; x2 (y1wm) ; :::;
x2 (ykwm) ; :::;
xn (y1wm) ; :::;
xn (ykwm)

1CCCCCCCCCCCCCCCCCCCCCA
= x
 (y 
w)
Next, �(x
 y)
= �(x1y1; x1y2; :::; x1yk; x2y1; x2y2; :::; x2yk; :::; xny1; xny2; :::; xnyk)
= (�x1y1; �x1y2; :::; �x1yk; �x2y1; �x2y2; :::; �x2yk; :::; �xny1; �xny2; :::; �xnyk)
Then, ((�x1) y1; :::; (�x1) yk; (�x2) y1; :::; (�x2) yk; :::;

�
�x(n)

�
y1; :::;

�
�x(n)

�
yk) =

(�x)
 y
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and (x1 (�y1) ; :::; x1 (�yk) ; x2 (�y1) ; :::; x2 (�yk) ; :::; xn (�y1) ; :::; xn (�yk)) =
x
 (�y)
For the third proposition,

(x+ x0)
 y

=
((x1 + x

0
1) y1; (x1 + x

0
1) y2; :::; (x1 + x

0
1) yk; (x2 + x

0
2) y1; :::;

(x2 + x
0
2) yk; (x3 + x

0
2) y2; :::; (xn + x

0
n) y1; :::; (xn + x

0
n) yk)

= (x1y1 + x
0
1y1; :::; x1yk + x

0
1yk; :::; xnyk + x

0
nyk)

= (x1y1; :::; x1yk; :::; xnyk) + (x
0
1y1; :::; x

0
1yk; :::; x

0
nyk)

= (x
 y) + (x0
y)

The fourth proposition follows in a similar manner.
H1
H2 is a Hilbert space. Firstly, the set of the tensor product of elements

from two di¤erent �elds yields a �eld itself. Secondly, one can construct a vector
space from two others since every vector space is free and �nally, one can de�ne
the inner product h:; :iH1
H2 : H1
H2 �! F1
F2 by hv1
v2;u1
u2iH1
H2 =
hv1;u1ihv2;u2i for v1;u1 2 H1 and v2;u2 2 H2. Completeness can be shown
by using the same inner product.
If H1 and H2 have orthonormal bases feng and fe0kg, respectively, then

fen 
 e0kg is an orthonormal basis for H1 
H2. Furthermore, the dimension of
H1
H2 is the product (as cardinal numbers) of the Hilbert dimensions i.e. the
dimension of such a space is n� k.
Proof. Let e1; e2; :::; en and e01; e

0
2; :::; e

0
k be linearly independent basis for H1

and H2 respectively. Then, From the basis (e1; e2; :::; en)
 (e01; e02; :::; e0k) we can
form the sum c1c

0
1e1e

0
1 + c1c

0
2e1e + ::: + c1c

0
ke1e

0
k + c2c

0
1e2e

0
1 + c2c

0
2e2e

0
2 + ::: +

c2c
0
ke
0
2e
0
k + :::+ cnc

0
1ene

0
1 + cnc

0
2ene

0
2 + :::+ cnc

0
ke
0
ne
0
k

If (e1; e2; :::; en)
 (e01; e02; :::; e0k) = 0
then c1e1(c

0
1e
0
1 + c02e

0
2 + ::: + c02e

0
k) + c2e2(c

0
1e
0
1 + c02e

0
2 + ::: + c02e

0
k) + ::: +

cnen(c
0
1e
0
1 + c

0
2e
0
2 + :::+ c

0
2e
0
k) = 0

) (c1e1 + c2e2 + :::+ cnen) (c
0
1e
0
1 + c

0
2e
0
2 + :::+ c

0
2e
0
k) = 0

) (c1e1 + c2e2 + :::+ cnen) = 0 or (c01e
0
1 + c

0
2e
0
2 + :::+ c

0
2e
0
k) = 0

) c1; c2; :::; cn = 0 or c01; c
0
2; :::; c

0
n = 0

) c1c
0
1; c1c

0
2; :::; c1c

0
k; :::; cnc

0
k = 0

) (e1; e2; :::; en)
 (e01; e02; :::; e0k) is linearly independent
This completes the proof.

1.23 Operators on Hilbert Spaces

Theorem 403 The collection of all operators on a Hilbert space form a space
themselvces

This is known as the dual space of a Hilbert Space. Similar to the
theorems we�ve done, we have the following:

Theorem 404 Every Hilbert Space is re�exive
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Proof. Consider the operator T : H �! H* such that T (x) = f where
f 2 H*. By Riesz�s lemma, every functional can be represented as an inner
product. That is, 9z such that f (:) = h:; zi and kfk = kzk. Together, this
implies that T is isometric and bijective.

Lemma 405 The hermitian conjugate of any vector in a Hilbert space H is an
element of the dual space of H

A dual space of any Hilbert space H is a collection of all functionals on H.

Proposition 406 Let T1 : H �! H and T2 : H �! H be operators. Then,
hT1 (x) ;xi = hT2 (x) ;xi 8x =) T1 = T2

Proof. hT1 (x) ;xi = hT2 (x) ;xi 8x
=) hT1 (x) ;xi � hT2 (x) ;xi = 0 8x
=) hT1 (x)� T2 (x) ;xi = 0 8x
=) T1 (x)� T2 (x) = 0 8x
=) T1 (x) = T2 (x) 8x
=) T1 = T2
The Hermitian of any vector is seen by applying the Hermitian operator on

the vector with the property that hT (x);yi = hx; T*(y)i

De�nition 407 Let H1;H2 be Hilbert spaces and T : H1 �! H2 be a bounded,
linear operator. Then, the Hilbert adjoint operator T*: H2 �! H1 of T is such
that, 8x 2 H1 and y 2H2

hT (x);yi = hx; T*(y)i

Theorem 408 The Hilbert adjoint operator T* of T is unique

Proof. Let T*1 : H2 �! H1 and T*2 : H2 �! H1 be Hilbert adjoints of
T : H1 �! H2

Then, 8x 2 H1 and y 2H2

hT (x);yi
= hx; T*1(y)i
= hx; T*2(y)i
=) T*1(y) = T*2(y) 8y 2H2

=) T*1 = T*2
Since operators can be viewed as matrices acting on a vector, we can view

the adjoint of an operator as a conjugate transpose of a matrix.

Proposition 409 Let H1 and H2 be Hilbert spaces and T : H1 �! H2; S :
H1 �! H2 be bounded, linear operators and � be any scalar. Then,

1. hT*(y);xi = hy; T (x)i

2. (S + T )*= T*+S*

3. (�T )*= �T*
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4. (T*)*= T

5. T*T = 0̂, T = 0̂

6. (ST )*= T*S*

Proof. hT*(y);xi = hx;T*(y)i = hT (x);yi = hy;T (x)i
Next, 8x;y, we have

h(T + S) *(x);yi = hx; (T + S) (y)i
= hx; T (y) + S(y)i
= hx; T (y)i+ hx; S(y)i
= hT*(x);yi+ hS*(x);yi
= h(T*+ S*)(x);yi

Hence (T + S)*= T*+S*
For 3.,

h(�T )*(y);xi = hy; (�T )(x)i
= hy; (�T )(x)i
= hy; �T (x)i
= �� hy; T (x)i
= �� hT*(y);xi
= h��T*(y);xi

Apply 1. and then the de�nition of the adjoint to get 4.
For 5., hT* (T (y)) ;xi =



0̂(y);x

�
, h0;xi = 0

, hT* (T (y)) ;xi = hT (y) ; T (x)i = 0
Since x;y 6= 0 are arbitrary, therefore T (x) =0 8x hence T = 0̂
Lastly, h(ST )*(x);yi = h(x; S (T (y))i = h(S*(x); T (y)i
= h(T* (S* (x)) ;yi 8x;y hene (ST )*= T*S*

Proposition 410 0̂*= 0̂

Proof.


0̂ (x) ;y

�
= h0;yi = 0 8x;y

Also,


0̂ (x) ;y

�
=


x;0̂* (y)

�
= 0 8x;y

so that 0̂*(y) = 0 = 0̂ (x) 8x;y
or 0̂*(x) = 0̂ (x) 8x
or 0̂*= 0̂

Proposition 411 1̂*= 1̂

Proof.


1̂ (x) ;y

�
= hx;yi = 0 8x;y

Also,


1̂ (x) ;y

�
=


x;1̂* (y)

�
= hx;yi 8x;y

so that 1̂*(y) = y
which implies 1̂*= 1̂
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Exercise 412 Show that T*�1 exists

Proof. Since T* exists for any T and I = I*, we have I*=
�
T�1T

�
*= T*T�1*.

Thus, such an operator will exist. In fact, T*T�1*= I so that T*�1
�
T*T�1*

�
=

T*�1I which implies
�
T*�1T*

�
T�1*= T*�1 or IT�1*= T�1*= T*�1

Theorem 413 Let Tn be a bounded linear operator for every n 2 N. Show that
if Tn �! T , then T*n �! T* where T* is the adjoint of T

Proof. kT*n � T*k = k(Tn � T ) *k = kTn � Tk �! 0 i.e. kT*n � T*k �! 0.
Thus, T*n �! T*

Theorem 414 Let H1 and H2 be two Hilbert spaces and let T : H1 �! H2 be
a bounded linear operator. If M1 � H1 and M2 � H2 such that M1 � T*(M2).
Then, T (M1) �M2

Proof. Let T (x) 2 T (M1) :Then, 9y 2M2 such that T*(y) = x

Theorem 415 Let H1 and H2 be two Hilbert spaces and let T : H1 �! H2 be
a bounded linear operator. If M1 � H1 and M2 � H2 such that T (M1) � M2,
then show that T*

�
M?
2

�
�M?

1

Proof. For the subspaces M1 and M2, we have T : M1 �! M2 and T*:
M2 �! M1 Since these are sets, so we�ll employ set-theoretic arguments. Let
T*(x) 2 T*

�
M?
2

�
and let y 2 T (M1) � M2. Then, T*(y) 2 T*(M2) so that

hT* (x) ; T* (y)i = 0
or hTT* (x) ; yi = 0
or hTT* (x) ; T (y*)i = 0 where y*2M1

or hT* (x) ; T*T (y*)i = 0
=) T*(x) 2M?

1

Theorem 416 Let H1 and H2 be two Hilbert spaces and let T : H1 �! H2 be
a bounded linear operator. If M1 � H1 and M2 � H2 be closed subspaces. Then,
T (M1) �M2 if and only if T*

�
M?
2

�
�M?

1

Proof. The necessary condition holds without invoking the closedness of the
subspaces, as was proved in the previous proof. To see the converse, from
T*
�
M?
2

�
�M?

1 we have

M??
1 � T*

�
M?
2

�?
=) M1 � T*

�
M?
2

�?
Since T* is bounded, it is continuous so that T*

�
M?
2

�
will be closed because

M?
2 is closed from the closure of M2: Hence, T*

�
M?
2

�?
= T*(M2) so that we

have M1 � T*(M2)

=) T (M1) �M2
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De�nition 417 A bounded linear operator T : H �! H on a Hilbert space H
is said to be

� self-adjoint or Hermitian if T*= T

� unitary if T is bijective and T*= T�1

� normal if TT*= T*T

Thus, if T is self-adjoint or Hermitian, then hT (x);yi = hx; T*(y)i =
hx; T (y)i : Hence, for a hermitian operator containing elements of the real �eld,
the corresponding adjoint is equal to its transpose because for any real num-
ber, the complex conjugate of that real number is equal to that real number.
If /T is unitary, then T*T = T�1T = I, implying that T is a unitary matrix.
From this, it is easy to see that the columns are orthogonal to rows. Also,
hT (x); T (y)i =



(x) ; T�1T (y)

�
= hx;yi so that unitary operators preserve

linear operators. This is how they derive their name.

Theorem 418 For Hermitian operators T , hT (x);xi is real.

Proof. Since we have hT (x);xi = hx; T (x)i from the property of Hermitian
operators and hT (x);xi = hx; T (x)i from the property of inner products, we
can conclude that hx; T (x)i = hx; T (x)i so that hT (x);xi is real.

Theorem 419 The eigenvalues of every Hermitian operator are real

Proof. Let H be a Hilbert space over F and T (x) = �x for � 2 F and x 2H
Then,

hT (x);yi = hT*(x);yi
) h�x;yi = h��x;yi
) � hx;yi = �� hx;yi
) � = �� if hx;yi 6= 0

Theorem 420 The product of two Hermitian operators is Hermitian if and
only if the operators commute.

Proof. Let H1 and H2 be Hilbert spaces and T : H1 �! H2; S : H1 �! H2 be
bounded, linear operators. Then, (ST )*= T*S*= TS. Since we have assumed
that the product of the operators is Hermitian, we have ST = (ST )* from which
we conclude that TS = ST , implying commuativity.
Conversely, if TS = ST , then (TS)*= S*T*= ST = TS so that (TS)*= TS,

implying that the product is Hermitian.

Theorem 421 For unitary operators U; V , the following holds:
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1. U is isometric. Converse holds if the isometry is bijective

2. kUk = 1

3. U�1 = U* is unitary

4. UV is unitary

5. U is normal

Proof. For 1, we have already proved that hU(x); U (y)i =


x; U�1U(y)

�
=

hx;yi so that the inner product as well as the metric de�ned from its norm
are preserved. Hence the name "unitary". Conversely, from the property of
isometries courtesy of the preservation of distance, we have hU(x); U (y)i =
hx;yi so that hUU*(x);yi. This is possible because every operator has to have
an adjoint. From this, we have UU*(x) = x for all bijective isometric operators
U , implying that UU*= 1̂. Since U is a bijective isometry, then we can have
U�1 and apply it to both sides of UU*= 1̂ to get U*= U�1

For 2, kUk = sup
x6=0

kU(x)k
kxk

= sup

p
hU(x);U(x)ip

hx;xi

= sup

p
hUU*(x);xip

hx;xi

= sup

p
hUU�1(x);xip

hx;xi

= sup

p
hx;xip
hx;xi

= sup 1
= 1
To prove that U* is unitary, we need to prove that (U*)*= U = (U*)�1.

U = U** and U*= U�1 imply that U = (U*)�1

Next, (UV )*= V *U*= V �1U�1 = (UV )
�1

Finally, U�1U = UU�1 so that U*U = UU*

De�nition 422 Let H be a Hilbert space and U � H. An operator P̂ : H �! U
is called the projection operator if P̂ y = P̂ and P̂ 2 = P̂ :

The product of two commuting projection operators is also a projection
operator.
Proof. Let P̂1 and P̂2 be two projection operators. Then,

�
P̂1P̂2

�y
= P̂ y2 P̂

y
1

= P̂2P̂1

= P̂1P̂2
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And �
P̂1P̂2

�2
= P̂1P̂2P̂1P̂2

= P̂1P̂1P̂2P̂2

= P̂ 21 P̂
2
2

= P̂1P̂2

justifying the requirments for projectivity of the operator P̂1P̂2:
The sum of two projection operators is not necessarily a projection operator

itself. Two projection operators are orthogonal if their product is zero. Thus,
P̂jP̂i = �ijP̂i. The sum of two projection operators is a projection operator if
and only if the projection operators are mutually orthogonal
Proof. �

P̂1 + P̂2

�y
= P̂ y1 + P̂

y
2 = P̂1 + P̂2

and �
P̂1 + P̂2

�2
=

�
P̂1 + P̂2

��
P̂1 + P̂2

�
= P̂ 21 + P̂1P̂2 + P̂2P̂1 + P̂

2
2

= P̂1 + 0̂ + 0̂ + P̂2

1.24 Strong and Weak Convergence

We know that in calculus one de�nes di¤erent types of convergnce. We�ve seen
such types: ordinary convergence, absolute convergence and uniform conver-
gence. We now move on to consider a weaker version of convergence but in
order to justify the word "weak", we will call our usual understanding of con-
vergence as strong convergence. More speci�cally,

De�nition 423 A sequence (xn) in a normed space X is said to be strongly
convergent if there is an x 2 X such that lim

n!1
kxn � xk = 0

Again, this will be shortened to xn �! x or lim
n!1

xn = x. x will be called a

strong limit.
Weak converge provides a sense in which a sequence is convergent based on

some particular support.

De�nition 424 A sequence (xn) in a normed space X is said to be strongly
convergent if there is an x 2 X such that for every f 2 X 0 lim

n!1
jf (xn)� f (x)j =

0.
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This will be written xn
w�! x. In a sense, we are mapping each member of a

sequence to a natural or real number, depending on the underlying �eld. That
is, we have a sequence (an) = (f (xn)). This allows us to resort to the familiar
theorems speci�c for real and complex numbers.
By Riesz�s lemma, every functional can be given a representation as an inner

product. Hence this de�nition implies the de�nition studied in MTH427

Theorem 425 Let xn
w�! x. Then,

1. The weak limit x of (xn) is unique

2. Every subsequence of (xn) converges weakly to x

3. The sequence kxnk is bounded

Proof. 1. Suppose xn
w�! x and xn

w�! y. Then, f (xn) �! f (x) and
f (xn) �! f (y). Since f (xn) is a sequence of real or complex numbers, its limit
is unique. That is, f (x) = f (y)

=) f (x� y) = 0 for all f
Hence x = y
2. This follows from the fact that if a real or complex sequence is convergent,

then every subsequence converges to the same limit as the sequence
3. Since (f (xn)) is convergent, it is bounded, say jf (xn)j � cf for all n,

where cf depends on f but not on n. De�ne gxn (f) = f (xn). Then, gxn (f) is
bounded for every f 2 X 0. Since X 0 is complete regardless of the completion
of X, we can apply the uniform boundedness theorem to X 00 and get kgxnk
bounded. By another corollary, kxnk = kgxnk
Finite dimensional spaces make life easier; here�s another reason why:

Theorem 426 In a �nite dimensional space, strong convergence and weak con-
vergence are equivalent

Proof. First we show that strong convergence implies weak convergence with
the same limit. If xn �! x. Then, for any f 2 X 0 jf (xn)� f (x)j � kfk kxn � xk �!
0 hence xn

w�! x
Conversely, suppose xn

w�! x and dimX = k. Then, xn = �
(n)
1 e1 + ::: +

�
(n)
k ek and x = �1e1+:::+�kek. By assumption, f (xn) �! f (x) for any f . We

take in particular f1; :::; fk de�ned by fj (ek) = �jk. Then, fj (xn) = �
(n)
j and

fj (x) = �j hence fj (xn) �! fj (x). From this, we readily obtain kxn � xk =
kX
j=1

�
�
(n)
j � �j

�
ej

 �
kX
j=1

����(n)j � �j
��� kejk �! 0 hence xn �! x

As might have been guessed, there are in�nite dimensional spaces where a
sequence may converge weakly but not strongly:
Take an orthonormal sequence (en) in a Hilbert SpaceH. Since every f 2 H 0

has a Riesz representation, f (x) = hx; zi. Hence f (en) = hen; zi. From the
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Bessel inequality,
1X
j=1

jhen; zij2 � kzk2 so that the series on the left converges to

zero. That is, hen; zi = f (en) �! 0. Since f in arbitrary, we see that en �! 0

but that is true since ken � emk2 = hem � en; em � eni = 2

Exercise 427 If xn 2 C [a; b] and xn
w�! x 2 C [a; b], show that (xn) is point-

wise convergent on [a; b]

Solution 428 We have to show that xn (t) �! x (t) for every t 2 [a; b]. Func-
tionals ft0 of C[a; b] are de�ned for vectors x (t) 2 C[a; b] such that ft0 (x (t)) =
x (t0) for t0 2 [a; b]. Hence, for any sequence of functions (vectors) xn (t) in
C[a; b], xn (t)

w�! x (t)
=) ft0 (xn (t)) �! ft0 (x (t))
=) xn (t0) �! x (t0) for any t0 2 C[a; b]. Hence weak convergence implies

point-wise convergence in C[a; b]

Exercise 429 Let X and Y be normed spaces., T 2 B (X;Y ) and (xn) a se-
quence in X. If xn

w�! x0, show that T (xn)
w�! T (x0)

Solution 430 Let xn
w�! x0. Then, jf (xn)� f (x)j �! 0. From kfk =

sup
0 6=x2X

jf(x)j
kxk , we have kxk = sup

0 6=f2X0

jf(x)j
kfk . Thus, kxn � x0k = sup

0 6=f2X0

jf(x�x0)j
kfk so

that for any g 2 Y 0
and for any T 2 B (X;Y ), we have jg (T (xn))� g (T (x))j =

jg (T (xn)� T (x))j = jg (T (xn � x))j
� kgk kT (xn � x)k
� kgk kTk kxn � xk
= kgk kTk sup

0 6=f2X0

jf(x�x0)j
kfk �! 0

Weak convergence covers scalar multiplication and vector addition.

Lemma 431 If (xn) and (yn) are sequences in the same normed space X, show
that xn

w�! x and yn
w�! y implies xn + yn

w�! x+ y as well as �xn
w�! �x

Proof. Let xn
w�! x and yn

w�! y. Then, for all � > 0, we have N1 such that
jf (xn)� f (x)j < �=2 8n � N1 and N2 such that jg (yn)� g (y)j < �=2 8n � N2
for all g; f 2 X

0
. Let N = max fN1; N2g and choose the particular f = g.

Then, jf (xn + yn)� f (x� y)j
= jf (xn)� f (x) + f (yn)� f (y)j
= jf (xn)� f (x) + g (yn)� g (y)j � jf (xn)� f (x)j+ jg (yn)� g (y)j < � for

all n � N
=) f (xn + yn) �! f (x+ y)

=) xn + yn
w�! x+ yy � x

Similarly, we can have jf (xn)� f (x)j < �= j�j and jf (�xn)� f (�x)j
= j�f (xn)� �f (x)j
= j�j jf (xn)� f (x)j < �

=) �xn
w�! �x
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Exercise 432 Show that xn
w�! x0 implies lim

n!1
inf kxnk � kx0k

Solution 433 For any weakly convergent sequence xn
w�! x0 6= 0, we can

choose nk such that the subsequence kxnkk �! lim
n!1

inf kxnk. Note that this
does not violate the fact that every subsequence converges weakly to x0. Now, by
Hahn-Banach theorem, there exists f 2 X 0

such that kfk = 1 and f (x0) = kx0k.
Then, jf (xnk)j � kfk kxnkk = kxnkk and
=) lim

nk!1
jf (xnk)j � lim

nk!1
kxnkk

=)
���� limnk!1

f (xnk)

���� � lim
n!1

inf kxnk

=)
����f � lim

nk!1
xnk

����� � lim
n!1

inf kxnk

=) jf (x0)j � lim
n!1

inf kxnk since every subsequence converges weakly to the
same limit
=) kx0k � lim

n!1
inf kxnk

Exercise 434 If xn
w�! x0 in a normed space X, show that x0 2 �Y where

Y = span (xn)

Solution 435 Assume that x0 62 Y =) x0 2 X � Y . Then, the conditons
satisfy the statement of theorem 4.6-7. Hence there exists f 2 X

0
such that

jf (y)j = 0 for all y 2 Y and f (x0) = � = inf
y2Y

ky � x0k

Since Y = span (xn), then xn 2 Y =) f (xn) = 0 for all n. Hence
f (xn) �! f (x0) implies f (x0) = 0 = inf

y2Y
ky � x0k =) x0 2 Y . Contra-

diction.

Exercise 436 If (xn) is a weakly convergent sequence, show that there is a se-
quence (ym) of linear combinations of elements of (xn) which converges strongly
to x0

Solution 437 From the previous exercise, we have that any element ym of Y
is a linear combination of (xn). Since x0 2 Y . therefore either x0 is a limit
point or it belongs to Y . In the �rst case xn �! x0 strongly. If x0 is not a limit
point, then it belongs to Y and is, therefore, a linear combination of (xn), in
which case for any linear functional, f (x0) = f (

P
�nkxnk) implying divergence

of the sequence f (xn), which is a contradiction.

Corollary 438 Any closed subspace Y of a normed space X contains the limits
of all weakly convergent sequences of elements.

De�nition 439 A weak Cauchy sequence in a real or complex normed space
X is a sequence (xn) in X such that for every f 2 X 0, the sequence (f (xn)) is
Cauchy in R or C.
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ote that lim
n!1

f (xn) exists. A weak Cauchy sequence is bounded

Proof. Let xn be a weak Cauchy sequence. Then, for any given � > 0, we
can �nd N 2 N such that jf (xn)� f (xm)j < � for n;m � N . Choose b =
max ff (x1) ; f (x2) ; :::; f (xN�1) ; �g. Then, jf (xn)j � b
Furthermore, every non-empty subset containing a weak Cauchy sequence is

bounded
Proof. Let A be a set in a normed space X such that every nonempty subset

of A contains a weak Cauchy sequence. Assume that A is not bounded. Then,
there exists an unbounded sequence in A such that kxnk �! 1. Since every
subsequence converges to the same limit, we can �nd a weak Cauchy subsequence
which is unbounded, a contradiction.

De�nition 440 A normed space X is said to be weakly complete if each weak
Cauchy sequence in X converges weakly in X.

Lemma 441 If X is re�exive, then X is weakly complete.

Proof. If a normed space is re�exive, then it is complete. It remains to prove
that every complete space is weakly complete. This follows from the fact that
strong convergence implies weak convergence.

1.25 Measure Theory and Hilbert Spaces

One of the most important examples of Hilbert spaces, from the point of view of
both theory and applications, is the space of Lebesgue square integrable func-
tions on Rn. Thus, the Lebesgue integral is essential for understanding some
of the most important aspects of Hilbert space theory. You�re probably famil-
iar with the Riemann integral (ordinary integration) of real-valued functions.
However, there are severe limitations on which class of functions can have a
Riemann integral. For instance, the function must be smooth. Technically, a
smooth function has to do with the existence of derivatives but we will su¢ ce
with an intuitive implication of the word. There are functions that are continu-
ous but not smooth. Consider a plotter of white noise. How are we to determine
the area under the graph of such a haphazard function? Here, we glimpse the
construction of the Lebesgue integral but not be even scratching close to the
subject. Interested readers are referred to "Introduction to Lebesgue Integral"
by Dr. Abdul Rahim Khan. We will be more focused on a second limitation
of the Riemann integral: the domain. As such, the integral is de�ned for the
real numbers. The Lebesgue integral o¤ers a perfect solution to consider more
general spaces than the 1D Euclidean space R.
We start with the very basic

De�nition 442 Let U be a �xed non-empty universal set. The function f :
U �!f0; 1g is called a characteristic function or indicator function of U .
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Given any characteristic function f , we can associate a unique subset A of
U , namely Af = fx 2 U : f (x) = 1g
Conversely, given any subset A of U , we can associate a unique characterisitic

function f on U namely

fA (x) =

�
1 if x 2 A
0 if x 62 A

This acts as the Boolean/truth-valued operator "belongs to is true" and
"belongs to is false". The alternative name for this function, membership
function, is therefore, justi�ed.
If you�ve studied logic, then the following theorem will be very englightening.

In particular, the relation b is analogous to saying that p =) q is the same as
� p _ q (read "not p or q")

Exercise 443 Let f and g be characteristic functions on U . De�ne the binary
operation ! by

f ! g =

�
0 if f = 1 and g = 0

1 otherwise

a) Prove that f ! g is a characteristic function on U

b) Prove that f ! g = max (Nf; g) where Nf =
�

0 if f = 1
1 otherwise

c) If A = fx 2 U jf (x) = 1g and B = fx 2 U jg (x) = 1g, prove that "f !
g = 1" if and only if A � B

Solution 444 a) We have

(f ! g) (x) =

�
0 if f (x) = 1 and g (x) = 0

1 otherwise

The domain of (f ! g) (x) relies on the domain of both f and g, which is U .
The range is f0; 1g
b) This can be done by considering every single case for f and g.
c) ( =) ) Let f ! g = 1. We will have three di¤erent cases.
Case I
f (x) = 1 and g (x) = 1
We can rephase this as "if f(x) = 1; then g (x) = 1" which gives us A � B
Case II
f (x) = 0 and g (x) = 1
If f (x) = 0 , then we have the empty set since f (x) = 0 for any x 2 U .

Since the empty set is trivially the subset of everyset, therefore A � B
Case III
f (x) = 0 and g (x) = 0.
If g (x) = 0, then f (x) = 0. That is, if x 62 B, then x 62 A. Hence,

Bc � Ac () A � B
((= ) If A � B, then for x 2 A, we have x 2 B. Hence, f (x) = 1

implies g (x) = 1. Thus, (f ! g) (x) = 1. Since this is valid for any x, we have
f ! g = 1
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Recall that _ means "or", ^ means "and".

Proposition 445 Let Ch(U) be the set of characteristic functions on universal
set U . Then, f; g 2Ch(U) =) f _ g, f ^ g;Nf 2 Ch (U)

Proof. De�ne (f _ g) (x) = f (x) _ g (x), (f ^ g) (x) = f (x) ^ g (x) and

Nf (x) =

�
1 if f (x) = 0
0 if f (x) = 1

If A = fx j f (x) = 1g and B = fx j g (x) = 1g, then f _ g; f ^ g; Nf construct
the sets A [ B, A \ B and Ac, respectively so that they do, indeed, form
charactersitic functions.
Note that f (x) _ g (x) can be de�ned in a multitude of ways. For instance,

max (f (x) ; g (x)) ; f (x) + g (x) � f (x) g (x). Similarly, (f ^ g) (x) might cor-
respond to min (f (x) ; g (x)), f (x) g (x). The characteristic function acts as an
intermediary between sets and the Boolean Ring. The following theorem will
explain this.

Theorem 446 If A and B are subsets of U , then

1. fA[B = max (fA; fB)

2. fA\B = min (fA; fB)

3. fAc = 1� fA

Proof. fA[B (x) =
�

1 if x 2 A or B
0 if x 62 either A or B

Consider the following cases:
1. fA (x) = 1 and fB (x) = 0, then, fA[B (x) = 1
2. fA (x) = 0 and fB (x) = 1, then, fA[B (x) = 1
3. fA (x) = 0 and fB (x) = 0, then, fA[B (x) = 0
4. fA (x) = 1 and fB (x) = 1, then, fA[B (x) = 1
In all such cases, the de�nition max (fA; fB) coincides with fA[B
The proof of part 2 is similar
For part three, consider only the two cases for fA (x) = 1 and 0
All of these ideas can be summed into one theorem:

Theorem 447 The cardinality of Ch(U) is the same as P (U)

Therefore, one does get a sense in which one can break down a characteristic
function by looking at the underlying subset. What happens if we have addi-
tional structure on the set? To use the words of Gerald Folland, the di¤erence
between the Riemann and Lebesgue approaches is thus: "to compute the Rie-
mann integral of f , one partitions the domain [a; b] into subintervals", while in
the Lebesgue integral, "one is in e¤ect partitioning the range of f ". We hope
to give a sense of this approach in the following:



1.25. MEASURE THEORY AND HILBERT SPACES clxxv

De�nition 448 A step function f on the real line R is a �nite linear combi-
nation of characteristic functions of semiopen intervals [ak�1; ak) � R.

Thus, for every step function f , there are intervals [a0; a1); :::; [an�1; an) and

numbers �1; :::; �n 2 R such that f =
nX
i=1

�ifi where fk is the characteristic

function of [ak�1; ak). The interval on which the step function is de�ned is
partitioned into the given semi-open intervals. We will inherently assumed that
the intervals are disjoint and that a0 < a1 < ::: < an :
Informally speaking, a step function is a piecewise constant function having

only �nitely many pieces and these pieces are the intervals [ak�1; ak). The
positioning of the pieces is determined by the values of �k.
This de�nition does not make sense if f = 0. Hence from hereon, whenever

we speak of step functions, we will mean non-zero step functions.
For all x 2 [ak�1; ak), f (x) = �k since then the characteristic function for

this particular interval is 1 and 0 for the others. In particular, �k = f (ak�1).
You�ve probably studied Heaviside function in MTH343 Partial Di¤erential

Equations. Here are some easy exercises:

Exercise 449 Show that the Heaviside function is a step function.

Exercise 450 The modulus/absolute value of a step function is again the same
step function.

Solution 451 For all x 2 [ak�1; ak), jf (x)j = j�kj. Thus for each k, jf (x)j =
j�kj fk (x) since fk (x) = 1 for all x 2 [ak�1; ak) by de�nition of a characteristic

function. Therefore, jf (x)j =
nX
i=1

j�ij fi (x) or jf j =
nX
i=1

j�ij fi

Exercise 452 The sum and product of two step functions is again a step func-
tion.

You are also required to prove this so we can move on without this easy topic
taxing us.This exercise is most important. For this, note that for any collection
of semi-open intervals, the intersection and union of two semi-open intervals is
also a semi-open interval.

Exercise 453 The product of a step function with a number is also a step
function.

In other words, the collection of step functions is closed under scalar multi-
plication.

Exercise 454 min (f; g) = 1
2 (f + g � jf � gj) and max (f; g) =

1
2 (f + g + jf � gj)

are step functions.
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Since the sum of two step functions is again a step function (exercise), we
can have for ourselves a binary operation for addition. The underlying set is
the �eld of real numbers and, therefore, the collection of step functions forms
an abelian group under addition. By the last exercise, we can also have a scalar
multiplication. Therefore, the collection of step functions forms a vector space.
As you will recall, the Heaviside function can be translated. In general, most

of the functions that you�re familiar with can be translated to the left or right
simply by considering f (x� c). For c > 0, x+c is a translation of c-units to the
left side whereas x� c is a translation to the right. We therefore make no leap
when we say that every step function can be translated by a �xed number. Thus,

for a step function f (x) =
nX
i=1

�ifi (x), we can have f (x� c) =
nX
i=1

�ifi (x� c).

This is still a step function. Let�s drop the non-negative restriction on c and
have f (x+ c). Then, we can de�ne a translation operator � c acting on a step

function f . Thus, � c (f (x)) = f (x+ c) =
nX
i=1

�ifi (x+ c). E¤ectively, what this

is doing in moving each semi-open interval by c units. Thus, [ak�1; ak) become
[ak�1 + c; ak + c). In fact, for each characteristic function fi (x), this becomes

fi (x+ c). That is, � c (fi (x)). Therefore, � c (f (x)) =
nX
i=1

�i [� c (fi (x))]. The

translation operator is a linear function!
Let�s move to what�s our main purpose: integration. Now, each step function

can be viewed as a collection of straight-lines, as mentioned. It makes sense,
therefore, to call the integral of a such a function as the sum of the rectangles
formed this way. We�re not considering a continuous function so this integral is
not the Riemann integral. It is just the area under the graph of a step function,
which we�re taking the liberty to call integral to derive an analogy.
Each rectangle has a base width of ak � ak�1. Each rectangle has a height

of �k. Thus, each rectangle has an area of �k (ak � ak�1). Thus, we de�neZ
f =

nX
i=1

�i (ai � ai�1)

Note the absence of dx. In e¤ect, this would�ve been
R
f =

1R
�1

f (x) dx had we

had for ourselves a continuous function.
It�s time for some exercises

Exercise 455 Let f; g be step functions. Then,
R
�f + �g = �

R
f + �

R
g

Solution 456 Let f =
nX
i=1

�ifi and g =
mX
i=1

�igi. and assume that the semi-open

intervals for f are [ak�1; ak) and those for g are [bk�1; bk). In this case, we have
a0 < a1 < ::: < an and b0 < b1 < ::: < bm: Since we have �nite numbers, we can
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order both together to get the ordering c0 < c1 < ::: < cmaxfm;ng. Technically,
this corresponds to taking the union of the partitions. With this, we can form
a new set of characteristic functions hi. From a geometric argument, we can

have
R
�f + �g =

maxfn;mgX
i=1

�i (ci � ci�1) but to make this correspond to our

characteristic function hi, we need to take a closer look at c0 < c1 < ::: <
cmaxfm;ng. If aj < ci < bk, then hi = fj + gk

Solving the RHS, we have �
R
f+�

R
g =

nX
j=1

�j (aj � aj�1)+
mX
k=1

�k (bk � bk�1)

but note that we can also have �f + �g =

maxfm;ngX
i=1

��ifi + ��igi where the

appropriate scalars are assigned a value of zero, if needed. It is then clear

that
maxfn;mgX

i=1

�i (ci � ci�1) =
nX
j=1

�j (aj � aj�1) +
mX
k=1

�k (bk � bk�1) where �i =

�ifi (x) + �igi (x) for x 2 [ck�1; ck)

Exercise 457
R
f =

R
� cf 8c

The answer lies in the fact that the length of [ak�1; ak) and [ak�1+c; ak+c)
is the same, that is, ak � ak�1

Exercise 458
��R f �� � R jf j

Solution 459
��R f �� = �����

nX
i=1

�i (ai � ai�1)
����� �

nX
i=1

j�i (ai � ai�1)j =
nX
i=1

j�ij (ai � ai�1) =R
jf j. The second last equality holds since ai > ai�1

For any function f , we say that f is positive or f � 0 if f (x) � 0 for all
x of the domain. Therefore, we say that f � g () 0 � g � f . This is when
0 � (g � f) (x) 8x () 0 � g (x) � f (x) 8x by the algebra of functions.
Intuitively, a function is said to be less than or equal to another function if the
graph drawn of one lies on or above the other.

Exercise 460 f � g =)
R
f �

R
g

The support of a non-zero step function is always a �nite union of the semi-
open intervals. Recall from the introductory chapter that suppf = fx : f (x) 6= 0g.
For which values is f non-zero? The characteristic function for each respective
interval is one. So, each characteristic function�s interval has to be included,
regardless of the value of �, unless it is zero.

Let g =
mX
i=1

�igi be a step function de�ned on the partition b0 < b1 < ::: <

bm. We can say that suppg = [a0; a1) [ [a1; a2) [ ::: [ [an�1; an) where n � m
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since we can relable each bi to a corresponding aj . We can, therefore, consider

a function f =
nX
i=1

�ifi de�ned only on the support of g. This corresponds to

taking away the non-positive scalars. If jf j < M , that is, if this function is
bounded above by a scalar M , then

Lemma 461
��R f �� �M

nX
i=1

(ai � ai�1)

Proof. We can look at the constant M as a function M (x) = M for all

x: Further, we can also represent M as M =
nX
i=1

�ifi: Then, jf j < M im-

plies
nX
i=1

j�ij fi <
nX
i=1

�ifi so that j�ij < �i � M=n for all i. Then,
��R f �� =

nX
i=1

j�ij (ai � ai�1) <
nX
i=1

�i (ai � ai�1) �M

nX
i=1

(ai � ai�1)

Lemma 462 Let [a1; b1); [a2; b2),... be disjoint subintervals of an interval [a; b)
such that

1[
n=1

[an; bn) = [a; b)

Then,
1X
i=1

[an; bn) = b� a

Proof. Let S � [a; b) consists of all points c such that the lemma holds for the
interval [a; c) and the sequence of subintervals [an; bn)\[a; c). Therefore, if c 2 S,

then c�a =
1X
n=1

(bc;n � an) where bc;n = min fbn; cg and the summation is over

all those n for which an < bc;n. It su¢ ces to prove that b 2 S so that S = [a; b).
To this end we �rst prove that supS 2 S and then show that b = supS. Indeed,
if s = supS and fsng is a non-decreasing sequence of elements of S convergent
to s, then

sn � a =
1X
n=1

(bsn;m � am) �
1X
n=1

(bs;m � am) � s� a

Since sn � a �! s � a, from the above, we have
1X
n=1

(bs;m � am) = s � a and

consequently s 2 S. Next we show that s = b. Suppose s < b. Then for some
k 2 N, s 2 [ak; bk) and thus bk 2 S. Since this contradicts the de�nition of s,
we conclude s = b.
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The above lemma may sound like something obvious, something that does
not require a proof. There are cases which the property does not hold, specif-
ically in the rationals. This indicates that some special properties of the reals
are essential here.

Theorem 463 Let (fn) be a non-increasing sequence of non-negative step func-
tions such that lim

n!1
fn (x) = 0 for every x 2 R. Then,

lim
n!1

Z
fn = 0

Proof. Since the sequence
�R
fn
�
is non increasing and bounded from below,

it converges (By monotone convergence theorem). Let lim
n!1

R
fn = � > 0



Appendix

1.26 Matrices

Let F be a �eld (this requirement can be considerably weakened). Then, an
array of elements of the form26666664

a11 a12 ::: a1m
a21 a22 ::: a2m
: :

: :
: :

an1 an2 ::: anm

37777775
with aij 2 F is called a matrix with n rows and m columns. In a short way, we
will write such matrices as (aij). Thus, A = (aij)m�n. Here, aij 2 F. The size
of the matrices is sometimes referred to as the degree of the matrix.
The addition of two matrices A = (aij)m�n and B = (bij)m�n is de�ned as

A+B := (aij + bij)m�n. That is, the corresponding entries are added. Similarly,
the corresponding entries are subtracted. The addition of two matrices with
di¤erent degrees is not de�ned. Let A,B,C be m� n matrices. Then, we have

1. A+B = B +A

2. (A+B) + C = A+ (B + C)

3. A+O = A where O is m� n zero matrix.

4. A+B = O if and only if B = �A

The �rst property holds if addition in the underlying �eld is commutative.
The second is a natural consequence of the associative law for addition in the
underlying �eld. The third can be obtained by letting O = (0)m�n and the
fourth using �A = (�aij)m�n :
Multiplication in matrices is not as simple: if R = (rij)m�k = AB, then

rij :=
nX
t=1

aitbtj

clxxx



1.26. MATRICES clxxxi

Note that if A is an m � n matrix, then B has to be an n � k matrix. So, for
instance, if A is 2� 3, B is 3� 3, and C is 3� 1;then (AB)C = A(BC) is not
possible. However, this holds for n� n matrices.
Proof. Let A = (aij)n�n, B = (bij)n�n, C = (cij)n�n be matrices over a
real numbers. That subscript indicates i-th row, j-th column entry. Consider
(AB)C.
Let R = (rij)n�n = AB, S = (sij)n�n = (AB)C:

Then sij =
nP
k=1

rikckj and rik =
nP
k=1

ailblk by de�nition of matrix multiplica-

tion. From this, we have

sij =
nX
k=1

 
nX
k=1

ailblk

!
ckj =

nX
k=1

nX
k=1

ailblkckj

This is possible because ail; blk; ckj are all elements from a �eld where the dis-
tributive law holds. Now consider A(BC).
Let R = (rij)n�n = BC;S = (sij)n�n = A(BC): Then, again by de�nition

of matrix multiplication, sij =
nP
k=1

ailrlj and rik =
nP
k=1

bilclk by de�nition of

matrix multiplication. Therefore,

sij =

nX
k=1

ail

 
nX
k=1

bilclk

!
= sij =

nX
k=1

ail

nX
k=1

bilclk

since, again, each enteries are from a �eld. That is, (AB)C = A(BC):
If � is the element of the underlying �eld F, then �A = (�aij)m�n, which

takes care of scalar multiplication. It immediately follows that if � and � are
numbers and A is the matrix, then we have �(�A) = (��)A, (�+�)A = �A+�A
and �(A+B) = �A+�B. If � is a number and A and B are the matrices such
that product AB is possible then �(AB) = (�A)B = A(�B). If A is a matrix
and O is zero matrix then AO = O .
Let A,B and C be three matrices then we have (A+B)C = AC +BC and

A(B + C) = AB +AC:

Proof. (a(b+ c))ij =
nP
k=1

(aik(b+ c)kj)

=
nP
k=1

(aik(bkj + ckj))

=
nP
k=1

(aikbkj + aikckj)

=
nP
k=1

(ab)kj +
nP
k=1

(ac)kj

= (ab)ij + (ac)ij
Similarly we can prove (A+B)C = AC +BC:
One can note that the distributive properties of the underlying �eld have

been invoked.
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The transpose AT of a matrix A = (aij)m�n is de�ned as A
T = (aji)n�m

The trace of an n � n square matrix A is de�ned to be the sum of the
elements on the main diagonal (the diagonal from the upper left to the lower
right) of A, i.e.

tr(A) = a11 + a22 + a33 + :::+ ann =
nX
i=1

aii

The trace is only de�ned for a square matrix (i.e. n� n).
The identity matrix In is a special matrix In = (iij)n�n such that iij = 1

for i = j and zero otherwise. This is called so because AI = IA = A.
Proof. Let A = (aij)n�n, I = (iij)n�n and AI = B = (bij)n�n. Then,
AI = (bij)n�n where

bik =
nX
k=1

aililk =
nX
k=1

ail

Therefore, (bij)n�n = (aij)n�n. Similarly for IA.
The determinant is a single number speci�c to a matrix which encodes certain

properties of matrix that are useful in systems of linear equations, aiding in the
provision of the inverse of a matrix. For a square matrix,�

a b
c d

�
The determinant of this matrix is ad � bc. The symbol for determinant is

two vertical lines either side. jAj means the determinant of the matrix A. This
is also written as det (A). For a 3� 3 matrix24a b c

d e f
g h i

35
the determinant is������

a b c
d e f
g h i

������ = a

����e f
h i

����� b ����d f
g i

����+ c ����d e
g h

����
= a(ei� fh)� b(di� fg) + c(dh� eg)

The determinant of a matrix of arbitrary size can be de�ned by the Leibniz
formula or the Laplace formula.The Leibniz formula for the determinant of an
n� n matrix A is

det(A) =
X
�2Sn

sgn(�)
nY
i=1

ai;�i

Here the sum is computed over all permutations � of the set f1; 2; :::; ng. A
permutation is a function that reorders this set of integers. The value in the
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ith position after the reordering � is denoted �i. For example, for n = 3, the
original sequence 1; 2; 3 might be reordered to � = (2; 3; 1), with �1 = 2, �2 = 3,
and �3 = 1. For each permutation �, sgn(�) denotes the signature of �, a value
that is +1 whenever the reordering given by � can be achieved by successively
interchanging two entries an even number of times, and �1 whenever it can be
achieved by an odd number of such interchanges.
In any of the n! summands, the term

nY
i=1

ai;�i

is notation for the product of the entries at positions (i; �i), where i ranges
from 1 to n.

a1;�1 :a2;�2 :::an;�n :
For example, the determinant of a 3� 3 matrix A (n = 3) isX

�2Sn

sgn(�)

nY
i=1

ai;�i

= sgn (1; 2; 3)

nY
i=1

ai;(1;2;3)+sgn (1; 3; 2)

nY
i=1

ai;(1;3;2)+sgn (2; 1; 3)

nY
i=1

ai;(2;1;3)

+sgn (2; 3; 1)
nY
i=1

ai;(2;3;1)+sgn (3; 1; 2)
nY
i=1

ai;(3;1;2)+sgn (3; 2; 1)
nY
i=1

ai;(3;2;1)

=

nY
i=1

ai;(1;2;3)�
nY
i=1

ai;(1;3;2)�
nY
i=1

ai;(2;1;3)�
nY
i=1

ai;(2;3;1)�
nY
i=1

ai;(3;1;2)�
nY
i=1

ai;(3;2;1)

= a1;1a2;2a3;3�a1;1a2;3a3;2�a1;2a2;1a3;3�a1;2a2;3a3;1�a1;3a2;1a3;2�a1;3a2;2a3;1

The following properties of the determinant of a matrix can be proved:

� det (A) 2 F

� det(In) = 1 where In is the n� n identity matrix.

� det(AT ) = det(A)

� det(A�1) = 1
det(A) = det(A)

�1

� For square matrices A and B of equal size, det(AB) = det(A) det(B)

� det(cA) = cn det(A) for an n� n matrix.

� If A is a triangular matrix i.e. aij = 0 whenever i > j or i < j then
its determinant is equal to the product of its diagonal entries. That is,

det(A) = a1;1;a1;2; a1;3; :::an;n =
nY
i=1

ai;i



clxxxiv APPENDIX

� If A is a unitriangular matrix i.e. aij = 0 whenever i > j or i < j and
aij = 1 for i = j, then its determinant is equal to 1.

� det (A�) = det (A)�

A cofactor of an n�n matrix A is a matrix
�
det (Aij)ji

�
n�n

. Here, Aij are

smaller matrices formed by deleting the i-th row and the j-th column, called the
(i; j)-minor of A. The matrix formed by taking the transpose of the cofactor
matrix of a given original matrix is called the adjoint of matrix A and is often
written adj(A).

Example 464 Consider a matrix A =

241 2 3
0 4 5
1 0 6

35
�rst �nd the cofactors of each element

A11 =

����4 5
0 6

���� = 24
A12 = �

����0 5
1 6

���� = 5
A13 =

����0 4
1 0

���� = �4
A21 = �

����2 3
0 6

���� = �12
A22 =

����1 3
1 6

���� = 3
A23 = �

����1 2
1 0

���� = 2
A31 =

����2 3
4 5

���� = �2
A32 = �

����1 3
0 5

���� = �5
A33 =

����1 2
0 4

���� = 4
so the cofactor matrix of A is24 24 5 �4

�12 3 2
�2 �5 4

35
Finally the adjoint of A is the tanspose of the cofactor matrix.

adjA =

2424 �12 �2
5 3 �5
�4 2 4

35
The multiplicative inverse of a matrix A is the matrix is de�ned as A�1 :=
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[det (A)]
�1adjA. This holds provided that det (A)�1 = det

�
A�1

�
6= 0. In fact,

the converse also holds i.e. A�1 exists if and only if det (A) 6= 0.

It can be shown that AA�1 = A�1A = I
Proof. Let A = (aij)n�n be a square matrix and det(A) 6= 0. We note that

adj(A) = (Aij)T

where Aij is the matrix of cofactors of A and is as

Aij = (�1)i+jMij

where Mij is the (i; j) minor of A.i.e

adj(A)ij = Aji

An easy calculation shows that

Aadj(A) = det(A)I

A is invertible if and only if det(A) is an invertible element of F, and in that
case the equation yeilds

adj(A) = det(A)A�1

=)
A�1 =

adj(A)
det(A)

To show
AA�1 = A�1A = I

we have
Aadj(A) = det(A)I

so

AA�1 = A
adj(A)
det(A)

= [det(A)]
�1
[Aadj(A)]

= [det(A)]
�1
[det(A)I]

= I

similarly
A�1A = I

i.e. A�1A = AA�1 = I
The operation of a matrix on a vector can be treated as matrix multiplication

if a vector is considered to be a n� 1 matrix.


