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This paper is an extension of [3]. Through-out this paper, we let M be a manifold.

Introduction

Differential Cohomology is a cohomological theory which extends a topological cohomology theory, i.e., a
generalized cohomology which satisfies Eilenberg-Steenrod axioms, an example of which is singular cohomol-
ogy C* (M,—) =Hom (Z[S. (M)],—). It does this by taking into account geometric data of the underlying
topological space. There are instances in which cohomology of the latter is agnostic about details of the
former. For example [5], let P — M be a principal U (1)-bundle with connection §. The class [F] of
2-forms in H? (M;R) in real coefficients (equivalently, de Rahm cohomology H3g (M) via the de Rahm
theorem) represented by the curvature F' of P do not determine the structure of P. Determining P up to
isomorphism would require an element of H? (M;Z), cohomology with integral coefficients. However, the
inclusion H? (M;Z) — H? (M;R) is not guaranteed, thanks to presence of Ext. Thus, knowing [F] with
real coefficients does not necessarily give us unique information when the coefficients are restricted to the
integers. In this way, two non-isomorphic principal bundles P and P’, say two closed manifolds with different
genera g and ¢’, can have the same [F]. Differential Cohomology aims to recover this loss of information.
The starting point of differential cohomology is a (smooth) manifold M to which one assigns a group,
allowing us to view differential cohomology as a functor from H: Top — Grp, coupled with a forgetful
functor H — H , where H is a topological cohomology theory that ignores geometric data of M. The target
category of H is more refined: H* (M) is a topological abelian group. The support for His usually defined
for non-negative integers. H is called a smooth refinement of H. The task of differential cohomology
thus is to factor a topological cohomology theory with real coefficients on a manifold M through those with
integer coefficients, by sending differential cohomology classes to its curvature differential form. Simultane-
ously, differential cohomology must also project to its underlying ordinary cohomology class through closed,

differential forms. Pictorially, the task loosely is
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H" (M;7) H* (M;R) (1)
Q4 (M)

How does the k-th member relate with other members of the complex?
Recall that we have
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where BF = d (QF1 (M)), ZF! = ker (Qkfl (M) -% F (M)) and QF (M) is the collection of closed

k-differential forms. Therefore, we can have the map
QFH (M) /B — QG (M) (2)

since d (w + B*7!) = dw is an exact and hence closed form. We also have B¥~! — ZF=1 — QF=1 (M) giving

rise to the map
HY ' (M;R) = Hy (M) = 2% /B¥ T — Q¥ (M) /BF 1. (3)

Finally, consider the short exact sequence
0—Z—>R—>R/Z—0

and apply the covariant functor Homgz, (C_1 (M), —) where Cy_1 (M) = Z [Si_1 (M)] is the free abelian group
over singular k—1-simplices Sx_1 (M) = Map (Akil, M) where A¥1 .= {(2¢,...,71) 1 20 + ... + 1 = 1,2; = O0Vi} <
R* is a k — 1 simplex. Because Cy_1 (M) is free, C*~1 (M, —) := Hom (Cr_1 (M), —) is exact and hence we

have a short exact sequence
0 — Homy, (Cx_1 (M) ,Z) —> Homy, (Cx—1 (M) ,R) — Homy, (Cx—1 (M) ,R/Z) — 0
That is, we have a sequence of cochain complexes
0 — C* 1 (M;Z) — C* Y (M;R) — C* 1 (M;R/Z) — 0

By appropriate, multiple uses of the Snake Lemma, we get a connecting homomorphism g, called the

Bockstein homomorphism:
—s H*Y(M;Z) — H*' (M;R) — H*' (M;R/Z) -5 H* (M;2) — H¥ (M;R) —> ... (4)
Putting all this information together allows an expansion of [I| as follows:

H*=1(M;R/Z) k(M;Z)

/
\

H*1(M;R k (M;7)

\ / \H’“ M:R) ()

Q¥ (M) fim (d Qg (M

Note that the right half of the above diagram is motivated by geometry, whereas the left half of the
diagram is ‘purely homotopy-theoretic’ in nature.

But does such a cohomology exist in nature?

Base case

To motivate this definition, let us compute the low-hanging fruit H° (M;Z) and H? (M;Z). First, recall that
R/Z is a category, like any group. That is, a 1-category. It is, in fact, 1-truncated and can be seen as sitting



inside a 2-category, because there are morphisms between morphisms of this category, which correspond to
paths between points on the circle. Viewing Map (M, —) as a functor which preserves this level of truncations,
we see that Map (M,R/Z) is also 1-truncated. Next, recall that every continuous map is homotopic to a
smooth map. Thus, viewing R/Z as a manifold, we have [M,R/Z] := moMap (M,R/Z) = 7oC* (M,R/Z).
Because of this homotopy equivalence, we conclude that C* (M,R/Z) is also 1-truncated. Next, recall that
7n (R/Z) = 7, (U (1)) = Z for n = 1 and is trivial for all other n. That is, R/Z is a K (Z,1) space. Also
recall that for any based CW-complex X, the set [X, K (Z,1)] of (based) homotopy classes of (based) maps
from X to K (Z,1) is defined to be H' (X, Z). Since manifolds have the homotopy-type of CW-complexes,
we have [M,R/Z] = [M,K (Z,1)] :== H' (M,Z). Thus, the space m (C* (M,R/Z)) of path components
C* (M,R/Z) is isomorphic to H' (M, Z). In particular, we have

70 : C* (M,R/Z) — H* (M;Z) (6)
But there’s more!
T (C* (M,R/Z)) = moQC™ (M,R/Z) = moMaps (S*,C* (M,R/Z)) = moMap (S*, Map (M, R/Z))

Lemma 1 moMap, ((S',s),(Map(M,R/Z),a)) = moMap (M, (Map. ((S*,s), (R/Z,7))))

Proof. This is simply the topolgical version of adjunction via currying. Precision calls for consideration of
base points. Two maps are in the same path component if and only if they are homotopic. Thus, on the
left hand side, we have f,g: S' — Map (M,R/Z) where f ~, g. That is, 3 continuous h : St x [0,1] —
Map (M,R/Z) such that h(s,0) = f(s), h(s,1) = g(s) and f(s)(m) = g(s)(m) = a(m) Ym € M and
Vs € S'. On the right, we have F,G : M —> Maps ((5173) ,R/Z,r) with continuous H : M x [0,1] —
Mapy ((S*,s) ,R/Z,r) such that H (m,0) = F(m), H(m,1) = G (m) where G (m)(s) = r = F(m)(s).
These data sets are the same. The choice of the base point in the latter is immaterial, since for « (m) , r € R/Z,
we know that there exists a contractible path connecting these two points. =
By definition, Map, (Sl, R/Z) is the loop space Q (R/Z). Thus,

mC” (M,R/Z) = moMap (M, Map, (S*,R/Z)) = moMap (M, (R/Z)) = H° (M;Z).
In particular, there is a surjective map
71 : C* (M,R/Z) — H° (M;Z) (7)

We will see later that this a characteristic class map of degree 1.

For our second ‘natural’ map fitting in the diagram for the base case, we define
curv : C* (M,R/Z) — QL (M) (8)

by curv (f) = f* (vol), where # indicates pullback and vol is the volume element on S!, say df. Because
d commutes with pullbacks, d (f* (df)) = f*d (df) = 0, making curv (f) a bonafide closed form, hence the
map is well-defined. To find the kernel, note that f* (df) = df = 0 by the good-old chain rule, implying that
f has to be a locally constant map f: M — R/Z. That is,

ker curv = H° (M;R/Z)



As for the image of the map curv, let i : S < M be an embedding, ¢ be a chain and f: M — R/Z =S!
be a map. Recall that any element g € Map (Sl, Sl) has the property that g (8 + 27) — g (0) € Z. Thus, for
foi=y,
ff*d@:zf 1* f*do =f (foi)*do :f g*do :f dg=g@2r)—g(0)eZ
¢ st st 51 st

and so,

im (curv) = {04 e QL (M) : J’ a € Z for all embeddings S' — M}
Sl
It is time for a definition.

Definition 2 Let k = 0 be an integer. A closed k-form w has integral periods if, for every smooth k-cycle

cin M
JweZ

We write QF (M) for collection of k-forms with integral periods. Of course QF (M) < QF (M) is a
subgroup, since for wy, we € Q% (M), wy — w1 € O (M) because

Finally, we also have the natural map

Therefore, im (curv) = Q1 (M).

p: Q0 (M) = C* (M,R) — C* (M, R/Z) (9)
given by f — mo f, where 7 : R — R/Z. Again, kerp = {f | mo f =0} = {f | f is integer valued} c

C* (M,R) consists of smooth, integer-valued functions. Such functions are locally constant. Moreoever,

d(mof) =dnodf =0, making w o f closed. If ¢ is any O-chain on M, then c is a linear combination of

Lwof:ZciLtiwofzo

points and so,

That is, ker (p) = QY (M).

More generally, we have

Lemma 3 w € QF (M) if and only if [w] € Hyy =~ H* (M,R) lies in the image of the map H* (M,Z) —>
H* (M, R).

Proof. ( = )It suffices to write out the de Rham isomorphism at the cochain level, explicitly:
I:Q% (M) — C* (M)

is given by I (w) where

I(w)czjwzf c*(w)eZ
c [0,1]*
Thus, w € QF (M) = I (w), € Z for all k-chains ¢ = [I (w),] € Z for all k-chains c

( <= ) Trivial since if [w] = w + do is integer-valued, then § w e Z for « = 0. m



This is one way in which differential cohomology aims to recover loss of information highlighted in the
opening paragraph.
The commutative diagram [5] is now

H° (M;R/Z) HY (M;7)
H° (M;R) “ (M,R/Z) H' (M;R) (10)
\ " / X . /
cl

where the map i is from [9] 7o in[6] and S is the Bockstein homomorphism in
Differential cohomology, however, requires the diagonals to be exact. To this end the following modifica-

tion is made:

\ M . , T " /
H® (M;R) =~ Hgp (M (M, R/Z) ~ Hap (M)
\ )/QO J\/ W‘ /

We have our diagram for kK = 1. Observe that the diagram is degenerate for £k = 0. Therefore,
following convention is made: H° (M;Z) = H° (M;Z). In particular, the first cohomology is given by the
discrete abelian group H° (M) = Map (M, Z).

Background

Differential Cohomology was introduced by Cheeger and Simons (of Chern-Simons fame) in 1973 [I]. The
original definition by Cheegar and Simons for differential cohomology constructed H* (M) as a graded
ring of differential characters on M. This was built on earlier work by Chern and Simons[2], and later
refined by Simons and Sullivan with a more axiomatic approach [§], subsuming earlier approaches and the
Deligne cohomology, among others. Now, the more accepted axioms include satisfying the diagram
called the “differential cohomology diagram” [7]. An alternate characterization is presented by Hopkins
and Singer in [4], with the main result that every generalized cohomology theory admits a differential
cohomological refinement (Theorem 3.8 of [6] and Theorem 2.17 of [4]). The paper is motivated by the
problem of quantization of the M5-brane by Edward Witten [6].

In fact, differential cohomology also has applications in other areas of physics, and, vice versa, stems from

considerations in physics, as well. Electromagnetic fields are differential cocycles in degree 2 in de Rham



cohomology, whereas magnetic monopoles are differential cocycles in degree 2 in differential cohomology.

More generally, differential cocycles model gauge fields [6].

Machinery of Differential Cohomology

Differential characters model connections on particular bundles. As the name implies, they are characters in
particular, hence a homomorphism. The original definition[I] suggested the set of differential k-characters
H* (M;Z) as the collection of homomorphisms x : Zy_1 (M;Z) — R/Z from (smooth) integer-valued

k-cycles to the circle group, subject to the condition that

x (0c) =meodZ

for every (smooth) chain ¢ € Cy (M;Z) and some w € Q¥ (M). Here, 0 : Cy —> Cj_1 is the boundary map.
Existence of w € Q (M) < QF (M) follows from Lemma |3| This gives us a map, called curvature of x,
given by the map curv : H* (M;7Z) — QF defined via y > w.

To show that this map is well-defined, we need to show that the w determined by x is unique. To this

end, let wy and wo be two such differential k-forms with
lf w1 — J‘ wo € 7

le—w2=0modZ.

That is, for all chains c,

Thus, wy = wo. The image of curv is Q% (M). To show this, observe that

dechwzx(a%) =x(0)=0

for every chain ¢. Thus, dw = 0. To show that Sc w € Z, or equivalently, y o @ = 0, it suffices to note that the
codomain of ¢ comprises of integer-valued functions.

The characteristic class map ch : H* (M; Z) —s H* (M;Z) is defined as follows: the Z-module Zj,_; (M;Z)
is free, hence projective, and the map R — R/Z is a surjective Z-module homomorphism. Thus, we have a

lifting

R — R/Z

X \\\\ TX

Zyp—1(M;2)

Now define I () : Cx (M;Z) — Z by

1)@ = [ eurv ()= x(00)
This map is well-defined since both summands are well-defined. We also know that d (curv (x)) = dw =0
where curv (x) € QF (M). Moreover, Y o @ is a integer-valued function, d (¥ (dc)) = 0. Thus, I (X) defines an
integer-valued cocycle. Consider another lift X¥. Then, X o d and X o @ define the same integer and so, I (¥)



and I (X) describe the same cocycle. Thus, [I(X)] = [I (X)] € H* (M;Z). This is the characteristic class of
X-

Next, recall the universal coefficient theorem

0 — Ext} (Hy_o (M;Z),R/Z) — H*' (M;R/Z) =3 Homy, (Hy—1 (M;Z) ,R/Z) — 0
with the map (—, —) given by, for [u] € H*~! (M;R/Z), {u,[2]) = u(z) for [z] € H},_1 (M;Z). This map
is an isomorphism: the map is clearly surjective by construction. Moreover, the map is injective because
Eaxt} (Hy—2 (M;Z) ,R/Z) = 0 (since R/Z is an injective Z-module). Now, apply the contravariant functor
Homg (—,R/Z) to themap P : Zy_1 (M;7Z) - Hy_1 (M;Z) yields the inclusion Homyz (Hx—1 (M;Z) ,R/Z) —
Homg, (Zx—1 (M;Z),R/Z). This map is an inclusion, since R/Z is an injective module. Thus, we have

H*'(M;R/Z) => Homg (Hy_1 (M;Z) ,R/Z) — Homz (Zi_1 (M;Z) ,R/Z)

Now, given X € Homg (Hy_1 (M;Z),R/Z), we have a unique [w] € H*~' (M;R/Z). The correspondence
is modulo Z. Moreover, x € Homg (Zx—1 (M;Z),R/Z) such that X (z + db) = x (z) mod Z. Thus, ¥ is a

secretly a differential character and hence we have the diagram

H* (M;7)

_—

HF1(M;R/Z) —— Homg (Hy—1 (M;Z) ,R/Z) — Homg (Z—1 (M;Z) ,R/Z)

The composite (—, =) : H** (M;R/Z) — H* (M;Z) gives us another map for the digram.
Now, for the final map, consider 2 : Q¥ 1 (M) — Homgz (Zx_1 (M;Z) ,R/Z) by

1 (W) (2) := exp (2m' f w)

2 = —1 and z is a smooth (k — 1)-cycle. This map is well-defined, since 1 (w) (z) = cos2mf,, . +

where 1

isin 27, ., for where 6, ., depends on w and z and is given by 0, . = SZ w. Note that if ¢ is a k-chain, then

2 () (0¢) = exp (2772' f C w) _exp <2m' f dw)

() (2) =meodZandz(w) (9) =de mod Z

In fact,

Thus, im (:) = H* (M;Z) and curv o v = d and we have commutativity in the diagram. To show that
ch o1 =0, note that

I(ew,Z)=JCUTU(ZW)_9w,ﬁz=Jdw_f w=de—de=O

Next, to find kers, we note the following equivalences

1(w) (2) = Omod ZVz < exp (27rif w) EZL Nz
z



— JweZVz

Moreover, w is closed since for any cycle z, 2 (dw) (2) = 2(w) (0z) by Stokes’ Theorem. Since z is a cycle,

0z =0 and
fw=0
0

Thus, ker: = Qg_l (M). Thus, the differential cohomology diagram, with exact diagonals, is

0 \ / 0
H*' (M;R/Z) i H* (M Z)
HEZ (M) H* (M;7) Hp, (M) (11)
Q1 (M) /257" (M) ‘ 2 (

M)/
\ 0

Theorem 4 Let Man be the category of smooth manifolds and Gr Ab, the category of graded, abelian groups.

\

0

There is a unique functor[8] H (—:Z) : Man®? — Gr Ab equipped with natural transformations
1 (= =) H* 1 (= R/Z) — H* (= 2),
2010 () /057 (-) — H* (i),
3. ch: H* (= 7Z) — H* (—Z), and
4. curv: H* (= Z) — Q71 ()

satisfying diagram

Properties of H*

In general, since H* (M) is a topological space in particular, the set of path components of HF (M) is well-
defined and a fundamental property of Differential Cohomology is that m (f{ k(M )) = H*(M;Z). Thus, F
and F’ may be seen as elements in a different path components of H2 (M). Moreover, H* (M) /T* (M) is iso-
morphic to the collection of exact k-forms QF (M) on M as a vector space. Here, T* (M) := H*"1 (M;7)®z,
(R/Z) cHY (M), where R/Z = U (1), the circle grougf!}

Appendix: Some Differential Geometry

Let E — M be a complex vector bundle and QF (M,C) := QF (M) ®z C be the complexification of
the de Rahm complex QF (M) and let Q* (M, E) be the graded Q* (M,C)-module of differential forms
with coefficients in E. A connection on E is a map V : QY (M, E) = T'(M,E) — Q! (M, E) such that

IThis gives rise to the name of the group “Torus group” T9



V(frg)=df nd+f AV YfeQ¥(M,C)and Vo € Q° (M, E). Therefore, a connection on a trivial line

bundle is just a 1-form A. The curvature in this case is the 2-form F' = dA.

Every vector bundle admits a connection. Connections on F uniquely extend to a linear map V :

QF (M, E) — QF+1 (M, E) satisfying V (w A ¢) = dwad+(—1)" wAVe Vw € Q% (M, C) and Vo € QF (M, E).
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