Preface

Notes for MTG 5326.0001 Topology II taught at FSU in Spring 2019 by Dr.
Sam Ballas.

In these notes, the notation A ¢ X means that A is a subset of X, which
may also refer to being an improper subset and 2% refers to the powerset of X,
which we assume to always exist for any X. C and R, respectively, refer to the
set of complex, respectively real, numbers.

Syllabus

Text: Algebraic Topology, Allen Hatcher
Eligibility: Graduate standing or permission of the instructor.
Course Content: This course will cover basic concepts in point set topology.
It will loosely follow Munkres book
Grading: The grade distribution for this course is as follows:
Homework — 40%
Midterms 30%
Final Exam 30%

The following numerical grade will guarantee at least the corresponding let-
ter grade, although depending on the performance of the class the grade cutoffs
may be lower:

A: 90-100; B: 80-89; C: 70-79; D: 60-69; F: 0-59.

Plus or minus grades may be assigned. A grade of I (incomplete) will not be
given to avoid a grade of F or to give additional study time. Failure to process
a course drop will result in a course grade of F.

Exams: There will be a 2 midterm exams and a cumulative final. These
exams will be taken during class. The exam schedule is as follows:

Exam 1: Tuesday, February 19
Exam 2: Tuesday, April 2
Final: Tuesday, April 30 10a-12p



1 Introduction

Roughly, the main goal of Algebraic Geometry is to add algebraic objects to
topological spaces such that the over-all structure is respected.

In this regard, what we should be looking for is a way to find invariant prop-
erties of topological objects. In case of graphs, which are topological objects, the
Euler characteristic x = v — e associates a number to each graph. Is this such
an invariant? That is, do homeomorphic graphs have same number of vertices
and edges and, therefore x? By definition, of course! We refer the reader to
Figure[l] G, the first graph and Gs, the second graph are both homeomorphic
and they share the same Euler Characteristic. However, neither one of them is
homeomorphic to G3 and observe that they don’t share the same y. However,
in the same figure, we have that two non-ismorphic graphs share the same x.
Thus, the converse is not true — two non-isomorphic graphs may have same Yx.
(G4 has the same Euler characteristic as G; and Go. Thus, not all information
is captured in y. A similar situation happens in Algebraic Topology.

(a) G1 (b) G2
(c) Gs (d) Gy

Figure 1: Various graphs

What information is the FEuler characteristic losing? In other words, what
is the equivalence relation between two graphs which share the same Euler
characteristic? Such an equivalence is called homotopy equivalence. To
define this, we first need to know what a homotopy is.

Definition 1 A homotopy is a continuous map F : (X, 7x)x[0,1] — (Y, 7v)

From here on, all maps will assumed to be continuous.



Theorem 2 F is a homotopy iff the homotopy is a family of maps f; : (X, 7x) —
(Y, 7vy) indexed by t € [0,1]

Definition 3 If (A,74) is a subspace of (X,7x) and there is a homotopy f: :
X — X such that

1. fOzide
2. f1(X)c A and
3. fi =ida and ¥t € [0,1]

Then, f; is said to be a deformation retraction of X onto A. In this
case, A is said to be a deformation retract of X.

Example 4 Let X = {ze€C:|z| <2} and A ={z€ C: |z| <1}. Define
T ifre A

ft(x):{ (1,t<|;7));p ife¢ A

Note that fo = idx. By definition, fi = ida and ¥t € [0,1]. Moreover, fort =1
and |z| < 2, we have

> L that 1 1 <1 L

— > — so that 1 — — - =

I Ed 2

Thus, the scaling factor is at most 1/2, so that f1 (X) < A. We can thus imagine
ft squishing a disc to radius 2 to radius 1.

What this example always suggests is that deformation retracts do not re-
spect openness and closedness of sets and subsets.

Example 5 What is a deformation retraction of R™\ {0} onto the n —1 sphere
5712 Since we have R™, we can work with the Euclidean norm || = 22 +z2+
e+ 22 for x = (21,...,7,) € R™. In fact, any norm would work since the topo-
logical spaces they generate are equivalent, as shown in Problem 1, Homework
1 last semester. We note that R™\ {0} > S"~1.
Define f: R™\ {0} — R™\ {0} by
x

T~
This function is well-defined: Proof. Let x =y. Then, |z| = |y| and e = m
so that f(x) = f(y) m

Now define F : R™\ {0} x [0,1] — R™\ {0} by F (z,t) =tf (x)+(1—t)z. F
is well-defined since multiplication and subtraction are well-defined in R™\ {0}.
Denote F (z,t) = fi(x). Then, fo(z) = (0)(f(z)) + (1 —-0)x = = so that



fo = idgm (oy. Furthermore, F (x,1) = f (z) for x € R™\ {0} so that f (z) € S*~*
by definition of f (z) and thus f; (R™\{0}) = S"~L. Finally, for a € S,

fela) = tf (@) + (1 =)=t +a—ta

Note that |a| =1 so that
a
tﬂ+a—ta:ta+a—ta:a
a

An even weaker notion of a deformation retract is what’s called a retraction:

Definition 6 If (A, 74) is a subspace of (X,7x) andr: X — A is a map such
that r|, = ida, then r is a retraction.

In lieu of 7|, = ida, we can equivalently say that r oi = ids, where i :
A —— X is the inclusion map.

If fi : (X,7x) — (X, 7x) is a deformation retraction, then f; : (X,7x) —
(A, 74) is a retraction. The converse is not true, because of the notion of “time”
in a deformation retraction. Consider any topological space (X,7x) and let
a € X and now let A = {a}. Then, the (only!) function r : (X,7x) — (A, 7a)
defined by r (z) = a is a retraction but not a deformation: suppose that r = f;
for some f; : X — A so we must have fo(z) = z, fi(z) = a and fi(a) = a for
each t. That is, we have a homotopy from idx to the constant map r. Thus, the
only way a retraction r is a deformation retract is when we have a homotopy
from idx to r.

Let (X, 7) be a topological space and I = [0, 1]. Then, a continuous function
f:I — X is a path. For each y € X, define a path v, : [0,1] — X by
vy (t) = fi (y). This is a path drawn by a fixed point in X. This path starts at
y since fo (y) = y and ends at a since f; (y) = a. In other words, we have just
proved that if X deformation retracts to a point, then X is a path connected.

Definition 7 A space (X, 7x) is contractible if X deformation retracts onto
a point.

The point does not matter: as in the above proof, the choice a € X was
arbitrary.

Problem 8 Show that if X is contractible, Ac X andr: (X, 7x) — (A, 7a)
18 a retraction, then A is also contractible.

Solution 9 Let X be contractible to a point sy € X. Then, there exists a func-
tion F : X x[0,1] — X such that F (x,0) = x, F (x,1) € {so} and F (so,t) = s¢
vt e [0,1] Since r : X — A is a retraction, then r|, = ida. That is,
r(i(a)) = a wherei: A —— X is the inclusion map. Define G: Ax[0,1] — A
by G (a,t) = F (r(i(a)),t). This function is well-defined

Proof. Let (a1,t1) = (aa,tz2). Then, a1 = az and t1 = ty so that and so
r(i(a1)) =7 (i(az)) and F (r(i(a1)) ,t1) = F (r (i(az)),t2) =



Then, G( 0) = F(r(i(a)),0) = a, G(a,1) = F(r(i(a)),l) = so and
G(a,t)=F(r ( (a)),t) = so so that G is a deformation retraction to the point
S0-

Definition 10 Let (X,7x) and (Y,7y) be topological spaces, A < X and f; :
X — Y be a homotopy. Then, f; is a homotopy relative to A (rel A) if
fila = fola = fily for all t.

In this case, the notation is fo ~4 fi1 and that f; (a) = f1 (a) = fo (a) for all
a € A. This is a useful notation in, for example, fixed end-points: let X = [0,1]
and Y be any topological space. Let A = {0,1}. This homotopy has fixed “end
points”. The usual definition of a homotopy is usually relative to A = &. Thus,
if f; is a homotopy such that fo = ¢g and f; = h, then it is not ambiguous to
say that g ~ h.

Proposition 11 Let (X, 7x) and (Y, 7y) be topological spaces and f, ' : (X, 7x)
(Y,7v) and g,9' : (Y, 7v) — (Z,72) be continuous maps. If f ~ f' and g ~ ¢,
then go f ~ g’ o f'.

Proof. Let F : (X,7x) x [0,1] — (Y, 7y) be a homotopy between f, f’
and G : (Y,7v) x [0,1] — (Z,7z) be a homotopy between g,¢’. Define
amap H : X x [0,1] — Z by H = G(F (z,t),t). Clearly, H is con-
tinuous. Moreover, H (z,0) = G (F (x,0),0) = G(f (z),0) = g(f(z)) and
H(z,1) = G(F(x,1),1) = G(f' (x),1) = ¢ (f' (x)). Thus, H is a homotopy
between go f and ¢’ o f’.

Thus, we can compose maps while respecting homotopies.

With these definitions in hand, we can now talk about homotopy equivalence,
a weaker notion of homeomorphism.

Definition 12 Let (X,7x) and (Y,7y) be topological spaces. Then, (X,7x)
and (Y,7y) are homotopy equivalent, denoted as (X,7x) ~ (Y, 7y ), if there
are maps f: X — Y and g: Y — X so that g o f is homotopic to idx and
f o g is homotopic to idy .

That is, go f ~ idx and f o g ~ idy. In this case, the spaces X and Y
are also said to be homotopic and the context should shed away any cause of
confusion.

If X and Y are homeomorphic and f is the homeomorphism between them,
then g = f~' satisfies the above requirements. Thus, homeomorphism is a
notion stronger than homotopy equivlence.

This is an equivalence relation.

Proof. Let (X,7x),(Y,7y) and (Z,7z) be topological spaces. Consider a
continuous function idx : (X,7x) — (X,7x). With the constant homotopy
fi(x) = x for all t, we can say that fy = idx whereas f; = z‘d;{l. Thus,
idy oidy' ~idy so that X ~ X.

If (X,7x) ~ (Y,7y), then there are maps f : X — Y, g:Y — X so
that go f ~ idx and f o g ~ idy. That is, there are maps g : ¥ — X and
f:X —Ysothat fog~idy and go f ~idx. Thus, (Y,7y) ~ (X, 7x).



If (X,7x) ~ (Y,7v) and (Y,7v) ~ (Z,7z), then we are guaranteed the
existence of continuous maps 3 continuous f; : (X, 7x) — (Y, 7y ), 3 continuous
g1 (Y,7y) — (X,7x) such that f; 0o g1 ~ idy and ¢ o f; ~ idx and 3
continuous fo : (Y,7v) — (Z,72), 3 continuous gs : (Z,77) — (Y, 7y) such
that fo 0 go ~ idz and go o fo ~ idy. Define f : (X,7x) — (Z,72) by
fi=foofiand g:(Z,77z) — (X,7x) by g = g1 0 g2. f and g are well-defined
since f1, f2, 91 and go are well-defined and because the composition of functions
is well-defined. Also, f and g are continuous since the compostion of functions
is continuous. Finally, fog = (fa0 f1) o (g1 0 ¢g2)

= fao(fiogi)oge

~ fy 0idy o go by Proposition

= f2092

x>~ idz

Similarly, go f = (g1 0 g2) o (f2 0 f1)

=g10o(g20f2)ofi

~ gy oidy o fi

=g10fi

=~ idX

Thus, (X,7x) ~ (Z,7z) &

A contractible space is a space that is homotopy equivalent to a point:
in one direction, we have the deformation retraction r : X — {a} and on the
other i : {a} — X. Then, the maps are homotopic to the respective identities:
by definiton, 7 o ¢ = id, so that, in particular, r o ~ idy,y. Conversely,
ior ~ idx follows from the fact that r is itself a homotopy rel A from idx to
a retraction from X to A. This is because (2) and (3) in Definition

We now go back to G; and G4 in Figure Smash the line in G4 to a
point by bringing the vertices together. Then, G is a retract of G4. Call this
operation f. Conversely, think of the right circle of G;. Take two points on the
right circle and form a chord. Shrink the cord down by bringing its end points
together. We now have three (distorted) circles joined together. and glue the
arcs that form between these joined end points and the origin vertex of the
graph. Call this complete operation g. These deformations make G; and G4
homotopy equivalent because doing ¢ first on G; and then applying f gives us
G4 back. That is, f o g = idg,. Similarly, go f = idg,.

Theorem 13 IfG; and Go are two finite graphs, then G1 and G are homotopy
equivalent iff their Euler characteristics are the same.

In the example above, we collapsed an edge with distinct end points and get
a homotopy equivalent graph with the same Euler characteristic. If we think
about it, this is essentially what happens whenever we get a homotopy. If we
keep on repeating this step, we will ultimately get a single vertex with k& petals
(something like G'3). Thus, every graph is homotopy equivalent to a rose Gy
with &k petals. That is, if Gy, is a rose with k petals, then x (Gg) = 1 — k. Thus,
we need to show that Gy, is homotopy equivalent to Gy iff k = [. The proof of
this fact will have to wait for now.



Note that the labelling in Figure [1| does not correspond to the definition of
a graph G with k petals, except G3 in Figure

2 CW Complexes

Before they’re defined, let us look at examples: graphs! They are an example
of 1-dimensional CW Complexes. Another class of examples are surfaces, built
using a gluing construction. We will have a look at surfaces in more detail in
later sections. For now, we simply focus on CW Complexes.

An n-cell is interior of an n-disc D™ = {z : |z| < 1} < R™. The boundary of
D", 0D"™, is S"~! = {z : |z| = 1} = R™. That is, the boundary of an n-cell is an
n — 1 sphere. Thus, the empty set is a —1 sphere. A straight line is a 1-cell. A
0 sphere is just two dots, which are on the “end” of a straight line, a 1-cell. A 0
cell, D, is simply the set 0. A square, which is a graph, is a collection of cells.
The vertices are O-cells, the edges are 1-cells whereas the area is a 2-cell. CW
Complexes are formed by n-dimensional cells. A square is thus a CW complex
with four O-cells, four 1-cells and one 2-cell.

What is the CW composition of a torus? A torus can be obtained by gluing
a square: join opposite sides together to get a cylinder and then glue the edges
of the cylinder to get a torus. This is a genus 1 surface. Informally, a genus is
the number of handles of a surface.

This is not the only possible shape we can get with a square. We can glue
each side of the square up to get a sphere, as well. To get yet another different
surface, we can start with an octagon. These can be joined together to get a
torus with two holes, a genus 2 surface. The labels of the octagon in Figure [2]
correspond to sides which need to be glued. The inverse indicates reverse order
of gluing sides (also indicated by arrows).

C71
d-1
d
a c
b
-1
a*l

Figure 2: Gluing construction for a 2-genus surface from an octogen

The recipe for a CW Complex is as follows:

1. Start with a discrete set, X°, called the 0-skeleton, which basically means



a set with the discrete topology. A lot of times, this will be finite but this
is not necessary.

2. Assume we have defined the n — 1 skeleton X" 1.

3. Let {D2} .4 be a collection of n-cells. Define an attaching map ¢, :
Sl = 9D" — X™ where X" is defined as

X1y {D2} ca

o

T~ Pq (T)

Yz € oD"

In 3, the denominator implies that we are considering x the same as ¢, (x)
and then obtaining the quotient topology. Thus, we can equivalently say that
for each « and for each xz € X, the following diagram commutes

opr —— 2, X"
\L xn=tupn
Dy T~pa(a)

In the example Figure 3] X° = {1,2,3} and the 1-cells are a,b,c,d. Call
the indexing set A = {a, 3,v,0}. Then, D} = a, Dé = b, D,ly =cand D} =
such that 0D}, = {1,2}, 0D} = {2,3}, D} = {1,3} and dDj = {3}. Then,
0o 8% = {1,2} — XY is as follows: ¢, (1) = 1 and ¢, (2) = 2 whereas
s (2) =2 and ¢g (3) = 3 (is this right?)

1 ] 2

Figure 3: Graph as a complex

To get a 1-dimensional CW Complex S, consider the interval [0,1] = a.
Then, a 1 cell a, a straight line and two 0-cells 0,1 can be attached by a



constant map ¢ (1) = ¢ (0) to get a circle. We can get a “usual” sphere in R3,
the 2-sphere S2, as a 2-cell by first constructing the 1-dimensional CW Complex
S1 and then identifying each points of S! with a 2-cell D2. Alternatively, we
can just as well start with a 2-cell D? and a 0-cell a. And then identify all of
0D? to the O-cell a by a constant map. We thus get a S? with a on “top” of it.
In general, to get the n-sphere, all we need is the 0-skeleton X° = {a} and an
n-cell. The process described above would then have empty i-skeletons X* = &
for 1 <i < mn — 1 whereas

DTL

X" = a~ p(0D")

A projective space is also an example of a CW-Complex. The real projective
n-space Rp, or more popularly RP", is the set of lines through the origin in
R™*+1. That is, RP" is formed by taking the quotient of R™*1\ {0} under the
equivalence relation x ~ Az for all real numbers A # 0. Since we can always
rescale A to unity, the quotient is then over x ~ —x, antipodal points. Thus,
the real projective space is then the quotient of lines with end-points of each
line identified.

Rg is the set of all lines in R' which pass through the origin with —oo ~ .
There is only one such line so that RP! = {R}. This is a singleton and thus a
0-cell. Therefore, Rg is a CW-Complex.

Rll, is interesting. The set of all lines passing through the origin in a plane
basically give us a single line itself because we can identify the slope of each line
with a real number. With the end-points identified, we get a circle. Note that
identifying antipodal points on (the boundary of) a circle makes no difference to

the circle. That is, S' ~ -2 ! RIQJ is a filled sphere with end-points identified.

In general, R} ~ xgiac where x € 0D™.

What are the subobjects of a CW-Complex? A subcomplex A of a CW
Complex X is a closed subspace A ¢ X that is a union of cells. A CW subcom-
plex is itself a CW Complex. A pair (X, A) consisting of a CW Complex and a
subcomplex A is called a CW pair. For example, a k-skeleton of a CW com-
plex is a subcomplex. Thus, lower dimensional R,’s are subcomplexes of higher
dimensional R,’s. A more interesting class of examples are spheres. Depending

on the construction, you can find trivial or non-trivial CW subcomplexes.

3 Fundamental Group

Recall that for two finite graphs G; and G2, we have still left Theorem
hanging: G and G5 are homotopy equivalent iff their Euler characteristics are
the same. That is, x (G1) = x (G2). One direction of the proof was partially
done (without many details?) To get the forward direction, we will apply what’s
called the fundamental group. This is a topological tool. The rough idea is that
a fundamental group sees how many loops there are in a space. What the
fundamental group does is takes a topological space as input and gives a group.



If two spaces are homotopic, then the groups are isomorphic. In cat speak, it is
a functor from the category of topological spaces to the category of groups.

Two paths fo, f1 : [0,1] — X have same end points if f, (0) = f1 (0) = g
and fo (1) = f1 (1) = z1. Two paths are homotopic (rel zg, 1), denoted by
fo ~{ao.e1} f1, if there is a homotopy from F : [0,1] x [0,1] — X such that
(a) F(0,¢) = xo (b) F(1,t) =1 (c) F(s,0) = fo(s) and (d) F(s,1) = f1(s)
(see Figure [6)

fi

/ .
fo

/

X0

Figure 4: Homotopy of paths

For example, let X = R™ with the usual topology and let xg, z; € R™ be two
points with paths fy, f1 between zy and x;. Consider F': [0, 1] x [0,1] — R™,
given by F (s,t) = (1 —t) fo (s)+f1 (s). To decrypt this, consider again Figure[6]
In this case, we have two paths with fixed end points. We start off with one
path and wriggle it out to the other. This wriggling corresponds to adding two
paths together by varying the weight (i.e., contribution) of each path.

This is so useful that it deserves its own theorem:

Theorem 14 If X < R"™ is a convex subset and xg,x1 € X and fo, f1 are paths
in X between xo and x1, then fo ~(y, 2,y f1 inside X.

Proof. Since X is convex, for a fixed s, F (s,t) = (1 —t) fo (s) + f1 (s) is always
in X. Note that F'(0,t) is a straight line between fq (0) and f; (0) for each s.
That is, a straight line between ¢ and zq if s = 0 and a straight line between
x1 and x7 if s = 1. F (s,t) is therefore a path for each ¢ in X. Note that F (s,t)
is a homotopy between fy and fi;. m

Thus, convex spaces do not have a very interesting homotopy structure.

The notation, fo >, ) f1, suggests that being homotopic is an equivalence
relation. This is indeed true. In what follows, the set {zg,z1} in the subscript
of ~ will be dropped.

Lemma 15 Let X be a topological space and let xg,z1 be points in X. Then,
the relationship of being homotopic is an equivalence relation.

10



(b) Conclusion

(a) Hypothesis

Figure 5: Transitive property of homotopy equivalence

Proof. Reflexive: let fy be a path from zg to x1. The homotopy F (s,t) = fo (s)
is constant in ¢. Thus, fo ~ fo. Note that F'(0,t) = fo(0) = xo, F (1, t) =
fo (1) = 21 and F(Sao) fo(s) =F(s,1).

Symmetry: if fo and f; be a paths from z¢ to 21 and fy ~ f;. Then, 3F :
[0,1] x [0,1] — X such that F (s,0) = fo (s), F(s,1) = f1(s), F(0,t) = g
and F' (1,t) = x;. Define H : [0,1]x[0,1] — X given by H (s,t) = F (s,1 — t).
Then, H (s,0) = f1(s), H(s,1) = fo(s), H(0,t) = z1 and H (1,t) = x so that
fi=fo.

Transitive: suppose that fo ~ f; with end points x¢p and z; and f; ~ f5
with end points z¢ and x;. Then, 3 homotopies F : [0,1] x [0,1] — X and
G :[0,1] x [0,1] — X such that F (s,0) = fo(s), F'(s,1) = f1(s) = G (s,0),
F(0,t) =29 =G(0,t), F(1,t) =z, = G (1,t) and G(s,l) f2 (s). Define

[ F(s2t) ifo<t
H(S’t){ G(s,2t—1) if k<t

Then, H(S 0) = F( ) U( )7 ( 1) = ( ) = f2(8)7 H(O,t)
F(0,2t) =z if 0 < t < % and H(0,t) = G (0, 2t—1) = xoif § < ¢
whereas H (1,t) = F (1,2t) = 21 if 0 <t < 3 and H (1,¢) = G (1,2t — 1)
if % < t < 1. For a visual representation, see Flgure ]

This suggests that we can also concatenate homotopies horizontally. There
is an interesting method: let xg,z1,z2 € X and let f be a path from x( to z;

<}
<1

[N H

and g be a path from 27 to x5. Define f.g:[0,1] — X by
B f(2s) fo<s<i
(f'g)(s)_{g@sl) if 1 <s<1

Then, f.g is a path from zq to z1. Clearly, (f.g) (0) = f(0) = z¢ and (f.g) (1) =
g(1) = z2. At s = 1, we have f (1) = ¢ (0) = z;. Notice that zg,z1,z> do not
have to be distinct. We could have loops around the point, like petals.

Lemma 16 If fy and f1 are homotopic paths between xy and x1, go and g1 are
homotopic paths between x1 and xo, then fo.go is homotopic to f1.g1. Moreover,

fi1-90 = fo-1

11



Proof. Let F : [0,1] x [0,1] — X be the homotopy between f; and f; and
G :[0,1] x [0,1] — X be the homotopy between gy and g;. Define H (s,t) =

(fe-9¢) ().
H = i 1
(5:0) = g ) { gt](t;fi)l) li % i Zi 21

If fo is a path between zy and x; and gg is path between x; and x5, then we
have that H (s,0) = fo.go is path between zy and x5. Similarly for H (s,1) =
fi.g1. Also, H (0,t) = f1(0) = ¢ and H (1,t) = g: (1) = x2. Thus, H is the
required homotopy. For fi.g0 =~ fo.g1, we can have H' (s,t) = (fi—t.9¢) ().
Then, H (s,0) = fi1.90 and H (s,1) = fo.g1 and H (0,t) = f1-+(0) = o and
HlLt)=g(1)=22. nu

This lemma shows that we can define concatenation on homotopy classes: if
[f] and [g] are homotopy classes in which the terminal of [f] is the initial of
[g], then we can have [f].[g] = [f-g].

And now, we can say what a fundamental group actually is. Let zg € X,

where X is a topological space. Then, the fundamental group of X based at
xoism (X, zo) = {[f] : f is a path from xg to zo} = {[f] : f is a loop based on
with binary operation of concatenation (as above). This is a group.
Proof. It is clear that concatenation is a binary operation. To prove asso-
ciativity, suppose [f],[g],[R] € 71 (X,20). We essentially need to prove that
[f1-([g]-[R]) = ([f]-1g]) - [A]. For the left side, the time scale of the represen-
tative f would be half whereas that for g, h would both be a quarter. Let its
path be P;. For the right side, the time scale of A would be half whereas that
for f,g would both be a quarter. Let its path be P,. Define ¢ : [0,1] — [0, 1]
by

2s 0<s<%
@ (s) = s+ 1 % <5< 5
is+41 J<s<l1
Then, P, (s) = Pi(¢(s)). Now define ¢ (s) = (1 —t)s + té(s). Note that

)-
oo (s) = id; whereas ¢1(s) = ¢(s). And now, we can define H (s,t) =
Py (¢:(s)). Then, H (s,0) = Pi(9o(s)) = Pi(s), H(s,1) = Pi(1(s) =
Py (9(s)) = Py (s) and H (0,8) = Py (:(0)) = Py (t6(0)) = Pi (0) = wo amd
H(1,t) = Py (60 (1)) = Py (1— £+ t6(1)) = Py (1~ £+ £) = Py (1) = .

Thus, the binary operation is associative. The identity for this group is
e:[0,1] — X is the constant map e (z) = x¢ for all z. To show this, let f be
a loop based at xg. We need to show that e.f ~ f and f.e ~ f.

If e.f is a path P; and f is a path P», then time interval for P, can be split
by half, each for e and f and, as we deform to f, the half reserved for f becomes
a full unit interval. Let ¢ : [0,1] — [0, 1] be defined by

N 0 ifo<s<}
¢“)_{251 ifl<s<l

Then, P; (s) = P2 (¢(s)). Define ¢ (s) = (1 —t) s + t¢p (s) and then use this
to define homotopy H : [0,1] x [0,1] — X by H (s,t) = Py (¢:(s)). Then,

12
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H(s,0) = Py(do(s)) = Pa(s), H(s,1) = Po(¢1(s)) = P2(d(s)) = Pi(s)
and H (0,t) = Py (¢:(0)) = P2(t¢(0)) = P> (0) = zy whereas H (1, ) =
P9 (1)) =P (1—t+tp(1) =P (1-t+1t)=P(1) = zo.

To show that f.e >~ f, let P; be the path for the right side (with the interval
divided into two, one half reserved for f and other for e) and P, be the path
for the right side. Let ¢ : [0,1] — [0, 1] be defined by

Then, P (s) = Py (¢(s)). Now, define ¢ (s) = (1 —t)s + t¢ (s) and then use
this to define homotopy H : I x I — X by H (s,t) = Pa(¢+(s)). Then,
H(s,0) = Py (00 (s)) = Pa(s), H(s,1) = Po(61(s) = Pr((s) = P (s)
and H (0,t) = Py (¢:(0)) = P2(t¢(0)) = P»(0) = z¢ whereas H (1,t) =
Py(dp (1)) =P (1—t+1to (1)) = P (1) = o

Every element f in m (X,20) has an inverse g. That is, Vf,3¢g : [f].[9]
= [e] = [¢].[f]- Thatis, f.g ~ e ~ g.f. Here is how we construct it: define
g(s) = f(1—s). For f.g, this actually moves the point xy along f from the end
towards somewhere in the middle sy and then reverses direction. This happens
for each sg € [0,1]. For g.f, the directions are reversed but the idea is the same.
In both cases, we might be moving =y along f in one direction or another but
we end up with a path that is homotopic to the constant function e. For this,
use the homotopy

- o f(2s) if0<
H(S7t) = (ft~gt) (S) = { (28 _ 1) 'f% <
where f; : [0,1] — X is loop based at z( such that

_f f(s) fO<s<1-—t
ft(s)_{ g(s) ifl—t<s<l1

and g; (s) = f(1—t) for all s. Then, H (0,t) = ( )
l—tand—gt()=f(1—t)—x11f1—t<s H1lt)=g1)=f(1-t
H{(s,0) = (fo-90) (s) = ():f()andH(Sl) (fr-g )() 9(s) =
f(l—t)if0<s<iand again, g1 (2s—1)=f(1—-t)ifI<s<1lm

The 1 in the subscrlpt reminds us that we can view I as S! (because we're
forcing end-points to agree). This can be generalised to S™.

f()—xglf0< <

—

Example 17 Let X = RF and let xo € X. We’ve seen that, for any two points
in X, any path between these two points are homotopic. Thus, T (Rk,xo) =

{[e]}-

For path connected spaces, there is an interesting result which assures us
that the choice of base point is invariant

Theorem 18 If X is path connected and xq, x1 are points in X, then w1 (X, xo) ~
w1 (X, 21). That is, the fundamental groups are isomorphic.

13



Proof. The proof is interesting because it is constructive, not done by contra-
diction.

Let f e m (X,21). Then, [h].[f].[h]™" € m (X,20) where h is a path
between zy and z;. Same argument as the inverses in the proof for group above
applies, except that over there, we could have said that the intersection point
is xg, which did not matter.

Denote [h] " = [A] and define By, : m (X, 21) — w1 (X, 20) by B ([f]) =
[h. f.ﬁ]. To show that this function is well-defined, we need to show that f ~
f’ = h.f.h ~ h.f'.h. Since h ~ h, f ~ f' and h ~ h and concatenation
respects homotopy, so the function is well-defined.

To show that it is a homomorphism, note that B, ([f.g]) = [h.f.g.ﬁ] =
[h.f.h.h.g.h] = [h.f.h] . [hgh] = 6Bn (f) Br (9)-

B m (X, xo) — 71 (X, 1) is the inverse homomorphism. m

In usual literature, a space (X, 7) is said to be simply connected if it is path
connected and if any two paths are homotopic. With what we have, we can
rephrase this definition as follows:

Definition 19 If a space (X, T) is path connected and for some xg € X, m (X, x0) =
{[e]} ~ 1, then X is said to be simply connected.

That is, instead of saying “for some”, we can say “for any”.

Recall that if a space is path connected, then it is connected. However,
if the space X was disconnected, let (U,V) be a separation of X. Then, in
particular, X is not path connected. Without loss of generality, we can assume
that U is a connected component containing xy and will, therefore, contain
a path connected component. From what we have seen above, m (X, x0) =
m1 (U v V,z) ~ 7 (U,xp). Thus, such groups only see the path component
containing xg.

Theorem 20 If X is path connected, then X is simply connected if and only if
there is a unique homotopy class of paths between any pair of points.

Proof. Let xg,x1 € X and X be simply connected. Then, in particular, it
is path connected and so, m; (X,z9) ~ {[e]} ~ m (X,21). Let f and g be
paths from xo to 21 and let eg (respectively, e1) be the constant path starting
at zo (respectively, x1). Note that f.g=! ~ ey and that g.g~! ~ e;. Then,
ffer=f (9" 9)=(fg")g=~eng=~g

Conversely, let xg € X, then if there is any homotopy class of paths between
any two points, then if f is a loop based at o, then f ~ e so m (X, z9) ~ {[e]}.
]

3.1 Fundamental group of S*

Our first big theorem says that m; (Sl) ~ Z. Notice the absence of the base-
point. This is because S! is path connected.

14



3.1.1 Foray into Covering Spaces

The approach will be by first embedding S* in R2. We can conveniently choose
any point in S1, as seen in R? so we can let o = (1,0). Now, consider a
loop w : [0,1] — S, defined by w (s) = (cos2ms,sin27s). We will use this
to prove that m (S',z0) = (w). That is, if n € Z, then [w]" = [w,] where
wy, = (cos2nms,sin2nmws). To accomplish this, we need to show that (a) if
v :[0,1] — S' is a loop based at z¢, then v ~ w, for some n € Z. That
is, [w] is a generator for m (S',20) and (b) to show that the order of wis
infinite, we will show that if w,, ~ w,,, then m = n. Thus, we can show that
p:Z7—m (Sl7 xo), defined by n —— [w]", is an isomorphism.

In order to do (a) and (b), we need to define p : R — St by p(s) =
(cos 2nms, sin 2nms). This map is an instance of what’s called a covering space.

Definition 21 Let (X,7) be a topological space. A covering space of X s
a topological space X and a map p : X — X such that, Vo € X, there is a
neighborhood V' containing x such that p=* (V') is a disjoint union of open sets,
each of which is mapped homeomorphically by p to V.

V is an evenly covered neighborhood. The map p is usually called the
covering projection, or sometimes the covering map.

Lemma 22 (Homotopy Lifting Lemma) Let p : X — X bea covering
map. Suppose that there are maps F: Y x [0,1] — X and F: Y x {0} — X,
so that N
F =F
po ¥ {0} |Y><{0}
Then there is a unique extended map F:Y x [0,1] — )N(, lifting F' (such that
poF=F)

In other words, given a homotopy and a lift at the left end point, there is a
unique lift of F' that extends to F. The following diagram depicts the situation:

y — %

X

//>,
Y x{0} Ij/’ lp
X

Y x [0,1] —EF—;

Proof. We first claim that for each yo € Y, there is a neighborhood N containing
Yo on which we can build a lift of F. In other words, there is a map F' :
N x [0,1] — X so that po F = F|NX[0,1].

To prove this, for each t € [0, 1], we can pick an evenly covered neighborhood
U, of F (yo,t) € X. By continuity, there is a product neighborhood Ny x (a4, b;)
where NV, is an open subset of Y and (ay, b;) is an open subset of [0, 1] such that
F (Ny x (ag,b;)) € Uy. By compactness, {yo} x [0,1] can be covered by finitely
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many neighborhoods of this type and so, we can choose a single (connected)
neighborhood N < Y such that yy € N and a finite partition 0 = tg <t} < ... <
tn, =1 so that F (N x [t;,ti11]) < Ui.

Ut F(yO’t)

F(¥0,0)

Uo

Figure 6: Choice of N,

Now, we will lift by building f: Nx[0,1] — X by induction. Let Uy be the
component of p~1 (U,) that contains F (yo, 0). This set is a homeomorphic copy
of Uy. For (y,t) € N x [0,t1], we can define F (y,t) = p_1|U0 (F (y,t)). Assume
that we have defined F' on N x [0,t;]. We know that F (N x [t;, ti11]) < Us.
Let U; be the lift of U; that contains F (yo,t;). Define for (y,t) € N x [t;,ti41],
let F(y,t) = p~ |, (F(y,1))

Thus, for each yo € Y, there is a neighborhood N of yo on which we can
build F : N x [0,1] — X by F (y,t) = p~! (F (y,t))

_ We now need to show that this lifting in unique. That is, if yo € Y and
F; :[0,1] — X, so that
p (i) = F (yo,1)

for i = 1,2 and F» (0) = F3 (0), then F = B,

We can again use the standard compactness argument. As before, pick
0=ty <ty <..<t,=1so0that F({yo} % [ti,ti+1]) < U; (evenly covered
neighborhood). Since [to,t1] is connected, Fj ([to,1]) must be contained in a
single lift (connected images under continuous maps are connected) Uy of Up.
Since F} (0) = Fj (0), it follows that Uy is independent of . Since the projection
p is injective on ﬁo and pF~'1 = pﬁ’g, it follows that

[to.t1]



Now, we repeat the argument on each component of the partition of ¢. As-
sume by induction that

F = F

2
[tht']

[t07t']
Since the interval [t;,t;+1] is connected, there is a unlque lift U of U; so that

F; ([ti,t41]) © U;. p is injective on U; and pF1 pFQ and so

P = B
[tostit1]

[to,tit1]

And we'’re done with uniqueness. The next claim is as follows: if N1, Na < Y are
open sets and we can build lifts F7 : N1 x[0,1] — X and F5 : No x[0,1] — X
of Fy, then we can build a lift F': (N7 U N3) x [0,1] — X. To see this, let

’ Fy(y,t) ifyeNg

This function is continuous on the union, provided that we can prove the func-
tion is well-defined on the intersection IN; n Niy. If the intersection is dis-
joint, there is nothing to check. If it isn’t, we use the previous result: let
y € N1 n N». By construction, Fy (y,0) = Ey (y,0) and by previous part of
this proof, Fy (y,t) = F (y,t) for all t, so F' is well-defined on the intersection.
In summary, for each y € Y, we can find NV, 5 y and a lift F N, x [0, 1]
X. By the previous claim, we can assemble F,into F : Y x [0,1] — X by
F(z,t) = F,(z,t) if z € N,. Now, if Fy and F are both lifts of F, then by

uniqueness, F; = Fy, since they agree on sets of the form {yo} x [0,1]. =
Theorem 23 Let p: X—Xbea covering space. Then,

1. V paths f : [0,1] — X starting at x¢ and for each To € p~! (xg), there is
a unique lift f:[0,1] — X starting at To. In other words, all paths can
be lifted uniquely

2. For each homotopy of paths (homotopy rel. to end points) F : [0,1] x
[0,1] — X starting at xo and for each ¥o € p~* (xq), there is a unique
lift F:[0,1] x [0,1] — X starting at T

Proof. The proof is a direct consequence of the Homotopy Lifting Lemma.
For 1, use Y = {pt} and the fact that {pt} x [0,1] ~ [0,1]. For 2, let Y = [0, 1]
and by 1, there is a unique lift F : Y x {0} — X starting at . By Homotopy
Lifting Lemma, we can uniquely extend FtoY x [0,1]. Since F is a homotopy
of paths, F' (0,t) is constant and so, ﬁ’, the lifted extension, maps F (0,1) to Zo.
(]

Now, to prove the fact that the fundamental group of S is Z, first, note
that R is a covering space for S! via the map p : R — S defined by p (z) =
(cos 2z, sin 27z).
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Proof. Let U be an interval in S'. That is, we can have 2kr+ 60’ < x < 2km +0
for k € Z. For each k, 2kw + 0/ < x < 2kw + 0 is disjoint from k. m N

With this knowledge, we need to ask ourselves whether there is a map f :
X — R so that po f = f. By the way, if such map exists, then we say that
f is the lift of f with respect to p. Since we have w, : [0,1] — S! and
p: R — S we can have @, (s) = ns. Then, po @, (s) = p(ns) = w, (s). In
fact, even @, (s) = ns + k works for any k.

Now, we need to show that if v : [0,1] — S! is a loop based at xq, then
v ~ w, for some n € Z. This will show that [w] is a generator for m (S*, z()
Proof. Let f : [0,1] — S* be a loop at z¢. Then, by 1 of Theorem [23] there
is a lift f : [0,1] — X starting at 0 and so fa ) = n for some n € Z because 7
is a loop. We do know that all paths in R with same end points are homotopic.
Thus, f is homotopic (rel. end points) to the path w, which starts at 0 and
ends at n. So, there is a homotopy F : [0,1] x [0,1] — R from f to @, and so
F=po Fisa homotopy between f and w,. =

And now, we show that the order of w is infinite. We do this by showing
that if w,, ~ w,,, then m = n.
Proof. Let F:[0,1] x [0,1] — S be  homotopy between wy, and wp,. Then,
by 2 of Theorem (23 we can hft F to F [0,1] x [0,1] — R starting at 0. By
unlqueness of 1 of Theorem |2 fo = (s 0) = W, . Similarly, f1 = f (s,1) =

. Since F is a homotopy, it is continuous and Z < R is discrete, it follows
that F (1,t) is constant and F'(1,0) =n and F (1,1) = m, thusm=n. m

Theorem 24 We now prove that w1 (S™) for n = 2 is trivial.

Proof. Note that S™\ {z} is homotopy equivalent to R™ for any point x € S™.
To see this, we can imagine pulling S2\ {x} from where z is and then stretching
the remainder of S? flat out. This would cover entire R?. Arguments works for
a general n. Since R™ is simply-connected, this implies that S™\ {x} is simply-
connected. So if we show that any loop f in S™ is homotopic to some loop ¢ in
S™\ {z}, then f will be nullhomotopic since ¢ is in a simply-connected space.

To show f ~ g for some g, consider some point x € S™ that is not the
basepoint of f. Let N be a neighborhood of x. Since f is continuous, f~! (N)
is open in the relative topology [0,1]. Since f~! () is open, we can pick
intervals (a;, b;) such that each f (a;,b;) is pathconnected in N and with 0N =
{f (ai), f (bi)} and

7o) = (b
iel

for some indexing set I. Since f is continuous and {z} is compact in N, f~! ({z})
is compact in f~! (V). Thus, there is a finite subcover of f~! ({x}) such that

{x} U a;,b;)

Let f; : [a;,b;] — N be the path segment of f corresponding to [a;, b;] and
let g; : [ai,b;] — {f (a;), f(b;)} be the path segment of f corresponding to
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[a;, b;]. By construction, f; ~ g; with g; () # f (z) on Int (N). Form the path
g by replacing all the f; with g; in f, and note that f ~ g and g does not cross
x on Int (N ) ]

3.1.2 Applications

What can we prove with the machinery we have so far? The fundamental
theorem of algebral

Theorem 25 Fuvery non-constant polynomial has a root in C.

The idea of the proof as is follows: the function z — 2" takes the complex
plane and covers it around n-times. This is called the complex covering. If there
was a polynomial with no roots, then the covering of the unit circle would get
reduced to a trivial loop, a contradiction.

Proof. Let p(z) be a non-constant, monic polynomial p(z) = 2" + a;2" "1 +
... + an, for n = 1 with no roots. Since p has no roots, we can define, for r > 0,

let
- p(r62m‘s> /p(r)
I (8) = ez Jo )

This function pays attention to what the polynomial does on the circle of
radius 7. This is a homotopy of loops in S' based at 1. When r = 0,
we get the constant loop fo(s) = 1 so for any R, [fr(s)] = 0 € m (S*).
For now, let R = max (|a1| + |az| + ... + |an|,1). Then, if |z| = R, then
R >1andso [z"7!| = [z"72|. Thus, |2"| = (Jai| + |az| + ... + |an]) |2" 7] =
lar| [2" 7Y + lag| |2 72| + .. + Jan| = |a12" 7! + a22" 72 + .+ ap|. Let Py (s) =
2"+t (alz”’1 +agz" 2+ .+ an). Then, P;(z) has no roots on the circle
|z| = R for 0 <t < 1. Replacing p with P; in fg (s), we get

fre o) = AR R
T R (R [P (R)

This is a homotopy of loops. Note that fr1(s) = fr (s) and

rn e27rnzs/rn

= g f] = (cos 2mns, sin 2mns) = wy, ()

fro(s)
s0 0 ~ fr ~ wy, so n = 0. That is, the polynomial is constant, a contradiction.
]
We can also prove Brower’s Fixed Point Theorem.

Theorem 26 If f : D?> — D? is continuous, then there is a point x € D? such
that f (x) = x.

Proof. Let h : D> — D? be a continuous map with no fixed points. We can

construct a function r : D? — S! defined by connecting h (z) and z on the
boundary of D?. That is, there is a unique ¢ > 0 such that |(1 —¢) h (z) + tz| =
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1.Let r () = (1 — t) h (x)+tz. By implicit function theorem, r (x) is continuous
and so, if z € S*, then r (z) = 2. Since dD? = S!, r is a retraction. But there
cannot be any retraction from D2 to S': suppose that fy is a loop in St. If f
is a loop in D2, then there is a homotopy f; between fy and a constant loop so
that g; = r o f; is a homotopy between r o fo = fy and a constant loop in S*.
Thus, [fo] = 0€ m; (S?), a contradiction. m

For the next theorem, imagine S? embedded in R3. Antipodes are then
diametrically opposite points.

Theorem 27 (Borsak-Ulam) Let n = 2. Then, for every continuous map
f: 8" — R", 3 a pair of antipodes x,—x so that f (x) = f (—x)

Proof. Assume that for every continuous map f : S — R?, f(x) # f(—2)
Vx € S2. Then, define g : S2 — S by

 f@) = f(=a)
F@ = f (o)

and then define a loop 7 : [0,1] — S2, given by 7 (s) = (cos27s, sin 27s,0), a
loop which goes on the equator of S2. 7 is nullhomotopic since 71 (S?) ~ {[e]}.
We can now define another loop h : [0,1] — S! defined as g o 7. Since 7 is
nullhomopotic, h is also nullhomotopic. Note that

LS @S
F@—Fa)] ~ 1f@—f ()

so that g is an odd function. Moreover, n (s + 3) = (cos (2ms + ) ,sin (275 + ) ,
(cos27s cos  — sin 2ws sin 7, sin 27s cos ™ + sin 7 cos 27s, 0)
= (—cos2rs, —sin2ms,0) = —n(s) and that h(s+3) = g(n(s+3)) =
g(=n(s)) = —g (n(s)) = —h (s). Now, lift the loop h to R: let & be the lift of h
that starts at 0. Then, h (s+3) = h(s) + 4 where ¢, is an odd integer. This
integer may depend on s but the mapping s — ¢ _is continuous and hence
constant. Let ¢, = ¢. How far apart are h(0) and h(1)? Put s = § to get
h(1) :iwz(%) + 4 :%(0)—1—%—#% = h(0) + ¢, s0 h ~ wy, but ¢ is odd and so,
h £ 0. That is, the loop is simultaneously homotopic to the constant path and
not. m

In fact, the Borsak-Ulam theorem is true for any dimension. Thus, there are
always opposite points on the earth where temperature and pressure are both
the same.

Alternatively, we can equivalently say that every continuous f : 52 — R2
is non-injective. This is without reference to embedding.

Imagine a tangent plane on the sphere with orthogonal lines projecting to
the sphere. Then, we can always find antipodal points.

g9 (x)

g(—x)

Corollary 28 There is no embedding from S? to R?
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A cool application of this is that if S™ can be decomposed into n + 1 closed
subsets, then at least one of them contains a pair of antipodes.
Proof. Let Ay, Ay and Az be closed sets. Define d; : S — R by d; (z) =
d(x, A;), the distance between x and A;. This is a continuous function. Now set
f:8% — R?%f = (dy,dy). fisa continuous function so that there are antipodes
xo and —zg so that f (z) = f(—z). That is, they d(xg, 4;) = d(—xg, 4;) for
i=1,2. If d; (zg) =0 for ¢ = 1,2, then 2y and —x¢ are in A;. If dy (z9) £ 0 +
ds (0), 80 zg, —xo & Ay, Ay so that zg, —x9 € A3. B

4 The Functor

We won’t enter in to the details of the functor which produces the fundamental
group but we will test waters by specifically seeing products and morphisms in
topological spaces and their corresponding fundamental groups.

4.1 Products

Here’s a start:

Theorem 29 If X and Y are path connected topological spaces, then the fun-
damental group m1 (X X70p Y, (z0,%0)) = m1 (X, z0) Xgrp m1 (Y, %0)

Proof. Recall that for f : Z — X xY, we can have f = (g,h) withg: Z — X
and h: Z — Y and that f is continuous iff g and h are continuous. This tells
us that each loop f based at a point (xg,yo) is equivalent to loops g in X
based at x¢p and h in Y based at yy. The same is true for homotopies: each
homotopy f: : Z — X x Y is equivalent to a pair of homotopies f; = (g¢, ht)
with g : Z — X and h; : Z — Y. Now, we can define a homomorphism
6 1 1 (X 70y Vs (20,10)) — 7 (X,20) Xgrp 7 (Vo) by & (/1) = ([g], [h]):
This is a bijection, clearly, provided that the function is well-defined.

It is well-defined: let fy ~ f; (pathsin X xY") and let f; : [0,1] — X xY be
the corresponding homotopy. Then, we can have fy = (go, ho) and f1 = (g1, h1).
By the second part of the reasoning above, there are homotopies g; : [0,1] — X
(between go and g¢1) and h; : [0,1] — Y (between hg and hy). That is,
(905 ho) ~ (g1, ha).

Now, to show that ¢ is a homomorphism, notice that if fo = (go, ho) and
fi = (g1,h1), then fo.f1 = (g0-91, ho-h1) so that ¢ ([fo] . [f1]) = ¢ ([fo-f1])

= ([90-91], [ho-h1]) = ([g0], [ho]) * ([g1], [Pa]) = & ([fo]) * ¢ ([f1]), where =
is natural binary operation on 7 (X, o) Xgrp 7 (Y, y0). ®

An important example is as follows: the example of a manifold, the tori. The
n-torus, T™ := S' x §* x...x S* (n copies). Then, m (S* x St x ... x §') ~7Z".
To clarify, imagine the usual torus, 72. Any pair of integers then tells us how
many times one needs to go about both circles, which make up 72. The trefoil
knot is a (3,2) curve on the torus (see Figure [7)).
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Figure 7: Image taken from |stackexchange

4.2 Induced Homomorphisms

The idea is that continuous maps between topological spaces induce a homo-
morphism between their corresponding fundamental groups.

Let X and Y be topological spaces with base points x¢y and yo. Let ¢ :
X — Y be continuous with ¢ (zg) = yo. We can denote this as continuous
map between pointed topological spaces ¢ : (X, 29) — (Y, yo). Now, if [f] €
71 (X, x0), then [po f] € m1 (Y,y0). @ o f is called a pushforward of f. This
actually gives us a homomorphism ¢, between the corresponding fundamental
groups, defined by ¢, ([f]) = [¢ o f], where @y : m1 (X, 20) — 71 (Y, y0). This
function is well-defined homomorphism.
Proof. To show that @, is well-defined, let [fo],[f1] € 71 (X, o) with [fo] =
[fi]. Then, fo ~ f;. Let f; be a homotopy between fy and f;. That is,
fi () : X x[0,1] — X is continuous map. Since ¢ is continuous, then @ o f; is
continuous as the composition of continuous maps is continuous. Furthermore,
p o ft is clearly a homotopy between o fy and p o fi.

Let [f],[g] € m (X, x0). Concatenate their push-forwards (why?):

wo f(2s) fo<s<i

polia) = (o f)-(on ={ Fob® 192051

so that v« ([f].[9]) = ¢« ([f-9]) = [po (f-9)] =[(po f).(pog)]
=[(po )l-[(pog)] = v« ([f]) ¢« ([g]) =

Lemma 30 If id : (X,7x) — (X, 7x) is the identity homeomorphism, then
px : m (X, 20) — m (X, o) is the identity homomorphism. Furthermore, if
p: X —Y andp:Y — Z are two continuous maps with ¢ (xo) = yo and
¥ (yo) = zo and @y : 1 (X, 20) — ™1 (Y, y0) and ¢y : m1 (Y, y0) — m1 (Z, 20)
the induced homomorphisms, then the induced homomorphism (1 o ), of o
is equal to 1y o @s. That is, (1 0 @), = s 0 Py

Proof. The first is easy to see: @4 ([f]) := [idx o f] = [f].
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For the second, let [f] € m (X, x0). Then, (Y o), ([f]) = [(¥op)o f] =
[Vo(pof)]l =dullpof]) = veopu([f]) forall [f]. m

That is, m; induces a covariant functor from the category of pointed topo-
logical spaces to the category of groups. A corollary of this is that m; is home-
omorphism invariant.

Corollary 31 If ¢ : (X,7x) — (Y,7y) is a homeomorphism, then @, :
71 (X, 20) — m1 (Y, 90) is an isomorphism

Proof. It suffices to prove that (ap‘l)* = (px)

(pop™), =pso (o), =idy = (p7!), 00s = (ptop), =

How are these related to retractions? The following theorem provides an an-
swer. Recall that if (X, 7x) is a topological space and A c X, then a retraction
from X to Ais amap r: (X,7x) — (4, 74) such that r o = idy4.

Theorem 32 If (X, 7x) retracts onto a subspace (A,74), theniy : m (A, x9) —
1 (X, xo) is an injection homomorphism. If (X, 7x) deformation retracts onto
(A,7a), then iy is an isomorphism.

Proof. Let r: (X,7x) — (A, 74) be our retraction. Then, r oi = id4 and so,
s 01y = (ida),. Thus, iy is an injection.

If (X,7x) deformation retracts to (A,74), then there is a homotopy r; :
(X,7x) — (X, 7x) such that ro = idx, r1 is a retraction onto (A,74) and
Tl 4 = tda Vt. Let f:[0,1] — X be a loop based at zo € A. Then, r; 0 f is a
loop in A based at x that is homotopic to f by ;o0 f because roof = idxof = f.
It follows that iy ([r1 0 f]) = [r1 0 f] = [f]. So, ix is surjective. m

What is the group theoretic analog of a retraction? It’s a projection: let
H < G and p: G — H such that p|, = idg (i.e. p*> = p), so p is surjective
and hence we get the a split short exact sequence

{[e]} — K = kerp — GZ=H — {[e]}

where H ~ G/K. In other words, G ~ K x H, the semidirect product of K and
H. If H is normal, then G ~ K x H.

This also tells us that there is no retraction r : D? — S because m; (DQ) =
{[e]}, m1 (S*) = Z and there is no injection from i, : m (S') — m (D?).

The invariance of the fundamental groups also follows from homotopy equiv-
alence. That is, if f : (X,7x) — (Y, 7y) is a homotopy equivalence, then
fe i m (X, 20) — m1 (Y, yo) is an isomorphism.

The idea of the proof is simple but there is one detail which needs considera-
tion: since we know that we have a g : (Y, 7v) — (X, 7x) such that fog ~ idy
and g o f ~ idyx, we might be tempted to use g4 : m1 (Y,y0) — m1 (X, ).
However, note that m (X, z) ELN 71 (Y, f (z0)) 25 m1 (X, gf (20)), so we have
a base point issue. Simply put, homotopic maps always don’t induce the same

homomorphism. We can get around this by building a path between the two
base points.
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Definition 33 Let h; : (X, 20) — (Y, y0) be a homotopy of maps. If hy (x0) =
YoVt, then hy is said to be base-point preserving.

Proposition 34 Let h; : (X,7x) — (Y, 7y) be a base-point preserving homo-
topy. Then, (ho), = (h1),-

Proof. (ho), ([f]) = [hoof] = [hiof] = (h1),([f]). Since this holds
V[f] € m1 (X, zp), we are done (where do we use the fact that h; is base-point
preserving?) m

Lemma 35 Let ¢; : (X,7x) — (Y,7y) be a homotopy and h : [0,1] —
(Y, 7y) be a path, given by h(s) = @s(x0). Then, By o (p1), = (¢o), i-e. the
following diagram commutes:

m1 (Y, ¢1(20))

m1 (X, 20) Bh

m1(Y; ¢o(70))

Proof.

Let h¢(s) = h(st). This traces
the path h but in timescale [0, t]. Let
f be a loop in X based at xg. Then,
gt = hs. (pg o f) .hy is a loop based at @1(xg
o (o) homotopic to ¢g o f. This is
shown in Figure As t varies, each
loop h;. (1 o f) .h; moves and is then
based at ¢ (zg).

If t = 1, then hy.(p1of).hy ~ @ (xo)
o o f. Using this, we arrive at 8 o

(1) (Lf])

=B ([¢10f])

=B (lpoo /1) _ #o(xo)

= [hto(%of)oht]

= [po o f]

- ((@0)*) ([f]). = Figure 8: Loops g: based at i (z0)

Theorem 36 If f : (X,7x) — (Y, 7y) is a homotopy equivalence, then fy :
1 (X, 20) — m1 (Y, 90) is an isomorphism.

Proof. 1 (X,20) L5 m (Y, f (20)) 25 m (X, gf (w0)) 22 m1 (Y. (f (f (w0))).
where we have f; different from f, because the domains are different. Since
go f ~ idx, so by the above lemma, there is a path h such that g4 o fy, =
Bro(idx), = Bn, 50 gx o fyx is an isomorphism. Hence gy o f4 is a bijection and
S0, fx is injective and g, is surjective. Similarly, fy o g is also an isomorphism
and so, g is also injective and fy is surjective. m
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5 Van Kampen’s Theorems

And now, we will explore a tool to compute fundamental groups. The idea is to
compute 71 (X) by breaking X into simpler spaces, then use these fundamental
groups to compute m; (X).

As an alternative to Theorem here is a precurosor: if n > 2, then
71 (S™) = {[e]}. This is because an n-sphere can be built by taking two n-discs
and gluing them along their boundary, i.e. S®~! and because every path v in
S™ can be decomposed (up to homotopy) as a product y1.72.....7, ~ 7, where
each +y; is in one of the disks.

Recall free products: assume that we have two groups G and H and we want
a group I' which contains both G and H. We could get away with I' = G x H
but then we’d have G < Cr (H) and, conversely, H < Cr (G), so we're adding
relations we might not need. This is where the free product comes.

Let {Aa},cc be a collection of path connected (open) topological spaces.

Let
X € ﬂ Aa
aeC

For each o € C, we have

ig 1 Ay — X = U A,
aeC
and an induced map (i), : T (Aa, o) < 71 (X, 20). By the universal prop-
erties of free products, we get

(I) N *C’/Tl (Aa,.’bo) — 71 (X,ZL'()) .
ae

Theorem 37 (VKT-1) If{A.} . is a collection of open, path connected sets,
each containing a point xg and let

X=UAa

aeC

If for each o, 5 € C, Ay N Ap is path connected (assuming that the empty set is
path connected), then

D - *071'1 (Aq, o) — m (X, 20) .
e

18 a surjection.

Proof. Let v : [0,1] — X be a loop in X based at zp. Our idea will be
find 71,72, ..., 7% so that v; is a loop in A,,. These assumptions will essen-
tially help us conclude that each loop v in X based at zy decomposes up to
homotopy as y1.¥2.....yx where each v, = A,,. That is, v ~ v1.72.....7% so that
D ([11]-[v2] ----- [7]) = [7], which can help us with the proof.

Let Cp = 77 (Aq), then {Cu}, .o is a cover of I. By Lebesgue Number
Lemma, there is a partition of I, 0 = tg < t1 < ... < t, = 1sothat v ([t;, ti+1]) <
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Figure 9: Decomposition of loops

Aq, for some a; € C (see Figure [J). Let v; = 7 ([t;,ti+1]). By hypothesis,
Ay, N Ag,,, is path connected and so, there is a path g; from zg to v; (tiy1)-
Then, v ~ (Y095 ") (907197 ") - (Gn—27n—1) Where Yog5" € Aay, gon197 " € Aa,
and In—2TVn—1 € Aan,l -

Going back to S™ for n > 2, we again show that w1 (S™) ~ {[e]} in light
of VKT-1: for two open, path connected pieces A; and Ay of S™, A} n Ay ~
S"=1 xR so that ® : 7y (Ay, z0) *m1 (A2, 29) — 1 (S™, 70) gives us a surjection
of two trivial groups.

Another consequence of VKT-1 is that, if n # 2, then R™ is not homeomor-
phic to R2. This is called the invariance of domain.

Proof. If n = 1, look at past homework. For n > 2, if ¢ : R?> — R" is
a homeomorphism. Then, R?\ {0} ~ R™\{¢(0)}. Since R%\ {0} ~ S* x R.
The latter is an infinite cylinder. To visualize this, imagine pushing from the
punctured point outward towards a unit circle and then rotating each point
outside this unit circle continuously. This, therefore, tells us that, in general,
R™ {0} ~ S"7! x R. But m; (S* x R) ~ Z and 71 (S"7' x R) ~ m (S"7!) x
71 (R) ~ {[e]} since n > 3, a contradiction. m

From the first isomorphism theorem, we have

m (X, ) ~ >1<C7r1 (Aq, o) / ker @
aE
What is the kernel? That comes from van Kampen’s Second Theorem, VKT-2.

Before we look into the statement of the theorem and the proof, we look at an
example.
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Consider a genus 2 torus. Split it into two open, path connected sets A,
and Ag, as shown in Figure

Figure 10: Decomposition of genus 2 torus

Note that, for «, 5, Ao N Ag is path connected and that we have inclusion
maps iag : Aa N Ag —— Ay and ige 1 Ay N Ag —— Ag for free. With these,
we get corresponding inclusion induced homomorphisms

(A ﬂAﬁ,.’EO ‘%7’(1 Aa,fEO ‘%7’(1 XiL’O

N‘/

Aﬁﬂfo

and the diagram commutes. Let w € m (Ao N Ag,x0). Since iq 0 igg =
. . PR .. PR .. —1

ig 0 igq, We must have iqiag (W) = igiga (w) and so iaing (W) (igige (W) =
e. Let 7 = iqp(w) (iga (w)) ', Then, ® (1) = iaias (w)is ((iga <w))*1) =
io (lapg (W))ig ((i@a (w))_l) = e and so 7 € ker ® (see Figure . Note that in

each set, the loops are trivial but not in the free product.
This gives us a group

N = <ia (iap (w))ig ((iga (w))fl) ca,feCiwem (Ag N Ag,x0)> c ker ®

Theorem 38 (VKT-2) If{A.} . is a collection of open, path connected sets,
each containing a point o and let

X=UAa

aeC
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iaﬁ w)

Q Q

iﬁa(W)
(a) Ao (b) Ag (inverse here?)

Figure 11: Decomposed parts and corresponding paths

If for each «, B,y € C, Ay " Ay Ag is path connected (assuming that the empty
set is path connected), then

P *07'('1 (Aa,l‘o) — 1 (X,xo)
aE

s a surjection with kernel
N = (ias () (isa ()™ 10, B Cowe m (Aa 0 Ag,30) )

The trick here is to use iy : m (Aq, 29) — ™ (X, zg).

Proof. If [ f] € m1 (X, ), then a factorization of [ f] is a product [ f1] [f2] --- [fn]
where f; is a loop in some A,, based at z¢ and [f;] € 71 (Aa,,20) and f ~
fi-fa-...fn. This can be thought of as a road way to get surjection. Since the map
® is not necessarily injective, we may have many factorizations corresponding
to different loops. To remedy this, we can give an equivalence relation: two
factorizations of [f] will be called equivalent if they differ by a sequence of the
following

1. If [fi], [fi+1] € m1 (Aa,, To), then we can replace with [f;.fi+1]

2. If [fi] € Aq n Ap is a loop, then regard [f] as an element of m1 (Ay, x0)
instead of w1 (Ag,xo) (this isn’t allowed in free products of groups in
general)

Such an equivalence relation doesn’t change the elements of

>I<7T1 (AOH .'L'())
N

To show this, let [fi] € m1 (Ao N Ag,x0). Let [f&] = iag ([fi]) € m (Aa,, x0)
and [£7] = s (L) & m (Ag,,20). Then, 1] L] L] U] - [£2]
= AL [ £ 121 L2 Ui e L]
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= [l el ([£7] U217 2T i) o 1]

= L] Lfa] - [e] Lf ] Uil - L]

= LAl lfa] - 1 L] o ]

The goal is then to show that all the factorizations of [f] are equivalent.
This is equivalent to showing that

aeC

$ - ( % (Aa,xo)) /N — 71 (X, z0)

is an isomorphism.

Suppose that [f1] ... [fx] and [f1] ... [f]] are factorizations of [f] € m; (X, zo).
Then, fi.fo...f ~ fi.fo....f[. Let F :[0,1] x [0,1] — X be homotopies
between them. By compactness, choose partitions 0 = sp < 51 < ... < 8, = 1
and 0 = tg < t; < ... < t, = 1 compatible with the factorizations so that
F([si—1,si] x [tj—1,t;]) = Rij © Aa,,;. Each intersection might will be in four
boxes, then! Perturb one grid (see Figure .

vertices.

m)

"1

Y2
Figure 12: Perturbation of vertices

Number the bricks. Now, one point lives in at most three bricks. Call one
corner of a brick a vertex. Let 7; be the path which separates the first ¢ bricks
from the rest. Observe that we can get a factorization for F| . by picking
paths in the appropriate intersections from the images of vertices back to the
basepoint. Thus, going from 7y to ;1 changes the path but doesn’t change the
homotopy class of the first piece of the factorization because it is happening in
same piece 4;. =

5.1 Wedge Sums

Another useful tool is called the wedge sum. Let {(Xq,pa)},cc be a collection of

pointed topological spaces. Let \/ X, be the quotient obtained by identifying
aeC

all po to a single point p. If {(Xa,Pa)} e are loops, then we get G|c|, a rose

with |C] petals. Using this, we can compute m <\/ Xa,p>. Suppose that
aeC
for each p, € X, there is a neighborhood U, of p, in X, that deformation

retracts to p,. Then, m <\/ Xa,p> ~ 3k 71 (Xa,Da). In this case, X, is a
aeC aeC
deformation retract of X, \/ Us = A, (say). Note that the intersection of two
Bta
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or more A, is \/ U,, and hence contractible. This gives us the isomorphism
aeC

b * 1 (Xoupa) — T (v Xoup>~
aeC aeC

In short, we have just proved that w1 [ \/ Sl) ~ 3 7Z and gotten rid of
aeC aeC
the promised Euler characteristic.

Theorem 39 Let (X, pa) be a collection of path connected topological spaces.

If each p,, has a contractible neighborhood U, thenm | \/ (Xa,pa)> ~ >I<C7r1 (XoyDa)
aeC Qae

Proof. Let A, = X, \/ Up. This is path connected and satisfy VKT-2. Then,
atB

we get the surjection ® : 3k m (X4, p0) — m <\/ me> where ker @ is
aeC aeC
trivial. =

Another example: consider a square with all vertices connected (i.e. a square
with two diagonals). Compute the maximal tree. Label the un-traversed edges
e1,e9,e3 and traversed path T. Shrink it down to a point. Take an e neigh-
borhood of T' U e;. Deformation retract to T' U e;. This is a circle (see picture)
The fundamental group of these guys is Z. Note: T U e; intersected over 7 de-
formation retracts to T so fundamental group of the intersection of these guys
is trivial and so, fundamental group of the graph is Z3

Another graph. The theta graph G (looks like a rotated, squashed theta).
It’s the above but with one edge removed. Again, we get same T but this time,
only e; and es. Label two three vertices a, b, ¢ and let X, = G\ {a}, X}, = G\ {b}
and X. = G\ {c}. These are path connected as is the intersection of any two of
them but intersection of all three isn’t. Note that m; (X;) ~ Z and m (X; n X)
for 7 & j is trivial because the intersection is contractible. This also contradicts
VKT-2 because if we did get the surjection ® : m (X,) # m (Xp) * 71 (X)) —
71 (G). The kernel is trivial. Hence we get two copies of Z isomorphic to three,
a contradiction.

Here is a politically charged example: the Hawaiin Earring. Let C,, be a
circle of radius 1 centred at (1/n,0). Let

X=UCn

The space X is not the wedge of the earrings: the fundamental group of
the wedge of the cirlces is isomorphic to countable copies of Z whereas the
fundamental group of X is uncountable. For each n, let ,, : X — C,,. Combine
these maps get a surjection

p:m (X) — 11,2

on the space of all integer valued sequences. This space is uncountable.
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To show that p is a surjection, let (kq1,ke,...) € II,,Z. Build a loop based at

1
n+1|°

That is, for k; = 3, p loops around 3 times and C; from [0, %] This loop is
continuous path on [0,1). The original is going to contain all but finitely many

p that loops k,, times around the n-th circle on the interval [1 — %,1 —

circles. That is, for n > N, [1 — %H’ 1] c U (€;0). Thus, p is a surjection. p

is not an isomorphism since m; (X) is not abelian. Let p, : m (X) — #Z. A
non-abelian group cannot surject on to an abelian group.

5.2 Lens Spaces

These are 3-manifolds. That is, locally homeomorphic. Every point locally
looks like R3. Ny = D? x S!, the solid torus and N; = S! x S, the usual torus.
Both are not 3-manifolds, hence not Lens spaces because any point on Ny does
not give balls.

Let f : 0Ny — ON,. This is a homeomorphism. Let Ly = N; u Np/ ~
where z ~ y if x € dN7,y € 0N, such that f (x) =y. Ly is a 3-manifold.

Let A; = Nf, the € neighborhood of N; in Ly. Then, 7 (A1 n Ag) ~ Z?
because Ay N Ay ~ T2 x [

By VKT,

1 (Al) * T (AQ)
(ire () (i1 ()™ s we m (A1 0 Az) )
~ <[w1] [wg] : ilg (w) = i21 (w) Yw € T (A1 N A2)>

m (Lf) ~

Observe a curve w; on the donut (see picture) can be homotoped into Ay N
As. Thus, in m (Ly), [wi] = [w,]" for some k € Z, making the group (Ly) is
cyclic. Let my,mo be arbitrary curves in Ny and No with ms = f (m1). Then,
[m4] is trivial in 7 (V1) and hence trivial in m (Ly). Note that i12 [m] =
[m1] € m1 (Ly) and [mo] = [wi]™ = C% [m] for some m € Z\ {0} and that
{le]} = [m1] = [w2]™. Thus, m (Ly) ~ {ws] : [w2]™ = 1) ~ Z,,. If m = 0, the
curve is mapped to a meridian, giving us a cyclic group of infinite order.

Ly is the Lens space. Different homeomorphisms give us different Lens
Spaces. Certain homeomorphisms might give us homeomorphic Lens spaces,
which we will see in due time.

5.2.1 Classification of Lens Spaces

Given fi, fo : T? — T2, when are L ¢ and L’f homeomorphic? That is, homo-
topy equivalent.

Again, T? ~ R?/Z?. What is the action of SLy (Z). Note that SL, (Z) acts
on R? and preserves integer vectors. That is, the action of SLy (Z) on Z? gives
us Z2. All homeomorphisms arise from M : T? — T2, where M € SL (7).

31



For the previous example, let {m, w; } be basis for first turns and let {ms, ws}
be basis for second turns. Then,

(Z 2)(5)‘Mm1_<i)-a[mz]JrC[wz]

where [ms] is the meridian and [ws] is the longitude.

_(a b ;o d
M(c d>andM<C, d’)

be matrices in SLo (Z). Then, Lys is homeomorphic to Ly if and only if ¢ = ¢
and a = +a’modc. Ly is homotopy equivalent to Ly if and only if ¢ = ¢ and
taa’ is a square in Z/cZ

Theorem 40 Let

Thus, we can denote Lp; = L(c,a) since b and d play no role. Then,
L(7,1) ~ L(7,6) and L (7,2) ~ L(7,4) ~ L(7,3) ~ L(7,5)

L(1,0) ~ S3 because S3\N; ~ No. L(0,1) ~ S? x S and L(2,1) ~ RP3
(think of B3/z ~ —z. Drill a hole, say Ny (twisted torus). The remainder is
another torus. Paths move and come back.. hence closed curves!

5.3 CW Complexes again

Let X be a path connected space and let Y be the space obtained from X by
gluing a collection {eq}, . of 2-cells to X using attaching maps ¢, : S* — X.
Our goal is to compute 7 (V) in terms of 71 (X) and attaching maps, where
St = de,

A disc with two holes X, with fundamental group isomorphic to Z2, add
nipples to the holes. Path v1.¢1.77 is null homotopic in Y whereas v2.p02.73 is
not (see picture).

In general, for any base point sg, in the domain of the attaching map S*, let
To = Ya (S0) and let v, be a path in X from zy to z,. Then, v4.04. 7o is null
homotopic in Y and the subgroup N = {(V4.¢a-Fa : @ € C)y < w1 (X) normally
generated by V4.4 . Vo can give us a natural homomorphism i, : m1 (X, zg) —
71 (Y, yo). We will show that i, is a surjection with kernel N.

In order to show this, we prove a more general theorem.

Theorem 41 1. IfY is obtained from X by attaching a collection {eq} cc
of 2-cells, then the inclusion iy : w1 (X, x0) — m1 (Y, y0) is a surjection
with kernel N.

2. IfY is obtained from X by attaching a collection of n-cells {eq} o with
n > 2, then m (X) ~ m (Y)

3. If X is a CW Complez, then m (X) ~ m (X@)
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What this says is that CW Complexes are low-dimensional tools. From 2

implies 3, we see that CW Complexes forget higher dimensional attachment of
n-cells.
Proof. Let Z be the space obtained from Y by attaching rectangles S, ~ [0, 1] x
[0,1] so that [0,1] x {0} is attached along 7, and {1} x [0, 1] is attached at x,
along a “radius” of e,. Z deformation retracts onto Y. Thus, m (Z) ~ 71 (X).
For each e, we can choose y, € e, not on S,. Let

A= 2\ J{ya} and B = 2\X

Then, A and B (a bunch of rectangles) are open and path connected. A de-
formation retracts onto X. B is contractible. Thus, m (A) ~ 71 (X). An B
deformation retracts onto

\/'Yocﬁooz"yia

where ¢, = deq and so, m (AN B) = (Ya-pa-Ta : @ € C). By VKT, & : 1y (A) =
11 (B) — m (Z) with ker ® = <iA (w)ip (w) " :wem (An B)>. Note that
ip (W)™ ~ e because 7 (B) = {[e]} and iy : m (An B) — m (4) and
ip:m (AN B) — m (A). Thus, ker ® = {is (w)) = N and so, iy : 71 (4) —
71 (Z) is surjection with kernel N and so, iy : m1 (X) — m1 (X) is a surjection
with kernel N.

For 2, Use the same decomposition as before. Observe that A n B is a
collection of punctured discs and so, deformation retracts to

\/ Sn—l

[

which has a trivial fundamental group and hence simply connected. By VKT,
iy 2 m1 (A) * 7 (B) — 71 (Z) is an isomorphism because the intersection has a
trivial fundamental group (7 (A) = X, 71 (B) = {[e]}, m (X) =~ m (Y))

For 3, use induction. m

33



	Introduction
	CW Complexes
	Fundamental Group
	Fundamental group of S1
	Foray into Covering Spaces
	Applications


	The Functor
	Products
	Induced Homomorphisms

	Van Kampen's Theorems
	Wedge Sums
	Lens Spaces
	Classification of Lens Spaces

	CW Complexes again


