# Coloring Graphs and Beyond 

 Joint work with Soheil Anbouhi
## Abdullah Naeem Malik

Department of Mathematics
College of Arts and Sciences
Florida State University

April 15, 2024

## Weisfeiler-Lehman Test[WL68]

## Weisfeiler-Lehman Test[WL68]

## Definition

A coloring of a (undirected) graph $G=(V, E)$ is a function $c: V \longrightarrow \mathbb{N}$.

## Weisfeiler-Lehman Test[WL68]

## Definition

A coloring of a (undirected) graph $G=(V, E)$ is a function $c: V \longrightarrow \mathbb{N}$.

## Definition

A (perfect) hashing is any injective function.

## Weisfeiler-Lehman Test[WL68]

## Definition

A coloring of a (undirected) graph $G=(V, E)$ is a function $c: V \longrightarrow \mathbb{N}$.

## Definition

A (perfect) hashing is any injective function.

## Basic idea

start with $c(v)=c^{(0)}(v)$, and
$c^{(t+1)}(v)=$ hash $\left(c^{(t)}(v),\left\{\left\{c^{(t)}(w): w \in N(v)\right\}\right\}\right)[W L 68]$

## Weisfeiler-Lehman Test[WL68]

## Definition

A coloring of a (undirected) graph $G=(V, E)$ is a function $c: V \longrightarrow \mathbb{N}$.

## Definition

A (perfect) hashing is any injective function.

## Basic idea

start with $c(v)=c^{(0)}(v)$, and
$c^{(t+1)}(v)=$ hash $\left(c^{(t)}(v),\left\{\left\{c^{(t)}(w): w \in N(v)\right\}\right\}\right)[W L 68]$

## Weisfeiler-Lehman Test

If two graphs have different colorings, then the graphs are not isomorphic. Test is inconclusive if coloring of graphs is the same[MBHSL19]

## Weisfeiler-Lehman Test[WL68]



Graph 1


## Source:

https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

## Weisfeiler-Lehman Test[WL68]



Graph 1


Source:
https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

## Weisfeiler-Lehman Test[WL68]



Graph 1


Source:
https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

## Weisfeiler-Lehman Test[WL68]



Graph 1


Source:
https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

## Weisfeiler-Lehman Test[WL68]



Graph 1


Source:
https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

## Weisfeiler-Lehman Test[WL68]



Graph 1


Source:
https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

## Weisfeiler-Lehman Test[WL68]



Graph 1


Source:
https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

## Weisfeiler-Lehman Test[WL68]



Graph 1


Source:
https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

## Weisfeiler-Leman Algorithm[WL68]

## Recall..

A coloring of a graph $G=(V, E)$ at iteration $t$ is a function $c^{(t)}: V \longrightarrow \mathbb{N}$. A (perfect) hashing is any injective function.

## Weisfeiler-Leman Algorithm[WL68]

## Recall..

A coloring of a graph $G=(V, E)$ at iteration $t$ is a function $c^{(t)}: V \longrightarrow \mathbb{N}$. A (perfect) hashing is any injective function.

```
Algorithm Weisfeiler-Leman (WL) or Naive vertex refinement[WL68]
    1: Input: \(\left(V, E, X_{V}\right)\)
        Here, \(x_{v} \in \mathbb{Z}_{2}^{d}\)
    2: \(c(v)=c^{(0)}(v) \longleftarrow\) hash \(\left(x_{v}\right)\)
    3: while \(c^{(t)}(v)=c^{(t+1)}(v) \forall v \in V\) do
    4: \(\quad c^{(t+1)}(v) \longleftarrow \operatorname{hash}\left(c^{(t)}(v),\left\{\left\{c^{(t)}(w): w \in N(v)\right\}\right\}\right)\)
    5: Output: \(c^{(T)}(v) \forall v \in V\)
```


## Weisfeiler-Leman Algorithm[WL68]

## Recall..

A coloring of a graph $G=(V, E)$ at iteration $t$ is a function $c^{(t)}: V \longrightarrow \mathbb{N}$. A (perfect) hashing is any injective function.

```
Algorithm Weisfeiler-Leman (WL) or Naive vertex refinement[WL68]
    1: Input: \(\left(V, E, X_{V}\right)\)
        Here, \(x_{v} \in \mathbb{Z}_{2}^{d}\)
    2: \(c(v)=c^{(0)}(v) \longleftarrow\) hash \(\left(x_{v}\right)\)
    3: while \(c^{(t)}(v)=c^{(t+1)}(v) \forall v \in V\) do
    4: \(\quad c^{(t+1)}(v) \longleftarrow \operatorname{hash}\left(c^{(t)}(v),\left\{\left\{c^{(t)}(w): w \in N(v)\right\}\right\}\right)\)
    5: Output: \(c^{(T)}(v) \forall v \in V\)
Secretly message passing!
\(>\)
```


## Neural Networks



## Message passing in Graph Neural Networks



## Message passing in Graph Neural Networks



$$
x_{v}^{(k+1)}=\operatorname{COMBINE}\left(x_{v}^{(k)}, \operatorname{AGGREGATE}^{(k+1)}\left(\left\{x_{u}^{(k)}: u \in N(v)\right\}\right)\right)
$$

## Message passing in Graph Neural Networks



$$
\begin{gathered}
x_{v}^{(k+1)}=\operatorname{COMBINE}\left(x_{v}^{(k)}, \operatorname{AGGREGATE}\right. \\
\left.F^{(k+1)}\left(\left\{x_{u}^{(k)}: u \in N(v)\right\}\right)\right) \\
\psi: \mathbb{R} \longrightarrow \mathbb{R}
\end{gathered}
$$

## Examples of Message Passing

$$
\begin{array}{ccc}
\text { AGGREGATE } & \text { COMBINE } & \text { Ref } \\
\operatorname{MAX}\left(\left\{\sigma\left(W_{1} \cdot x_{u}^{(k)}\right)\right\}, u \in N(v)\right) & W_{2} \cdot\left[x_{v}^{(k)}, a_{v}^{(k+1)}\right] & \text { GraphSAGE[HYL17] } \\
W_{1} \cdot \operatorname{MEAN}\left(x_{u}^{(k)}, u \in N(v) \cup\{v\}\right) & \sigma\left(\left\{W_{2} \cdot a_{v}^{(k+1)}\right\}\right) & \text { GCN[KW08] }
\end{array}
$$

## Message passing in Graph Neural Networks

How powerful are graph neural networks?[MBHSL19, XHLJ18]

## Theorem

Let $G_{1}$ and $G_{2}$ be any two non-isomorphic graphs. If a graph neural network $f: \mathcal{G} \longrightarrow \mathbb{R}^{d}$ maps $G_{1}$ and $G_{2}$ to different embeddings, the Weisfeiler-Leman graph isomorphism test also decides $G_{1}$ and $G_{2}$ are not isomorphic. Converse holds if COMBINE and AGGREGATE are injective[XHLJ18].

## Message passing in Graph Neural Networks

How powerful are graph neural networks?[MBHSL19, XHLJ18]

## Theorem

Let $G_{1}$ and $G_{2}$ be any two non-isomorphic graphs. If a graph neural network $f: \mathcal{G} \longrightarrow \mathbb{R}^{d}$ maps $G_{1}$ and $G_{2}$ to different embeddings, the Weisfeiler-Leman graph isomorphism test also decides $G_{1}$ and $G_{2}$ are not isomorphic. Converse holds if COMBINE and AGGREGATE are injective[XHLJ18].

## Proof sketch

Compare
$x_{v}^{(k+1)}=\operatorname{COMBINE}\left(x_{v}^{(k)}, \operatorname{AGGREGATE}^{(k+1)}\left(\left\{x_{u}^{(k)}: u \in N(v)\right\}\right)\right)$
with
$c^{(t+1)}(v)=\operatorname{hash}\left(c^{(t)}(v),\left\{\left\{c^{(t)}(w): w \in N(v)\right\}\right\}\right)$

## Limits of WL Test

WL Test fails to distinguish the following graphs:


## k-Weisfeiler-Leman Algorithm

Algorithm $k$-Weisfeiler-Leman ( $k$-WL)

```
1: Input: \(\left(V, E, X_{V}\right)\)
                            Here, \(x_{v} \in \mathbb{Z}_{2}^{d}\)
2: \(c(\vec{v})=c^{(0)}(\vec{v}) \longleftarrow\) hash \(\left(x_{\vec{v}}\right)\)
3: while \(c^{(t)}(\vec{v})=c^{(t+1)}(\vec{v}) \forall \vec{v} \in V^{k}\) do
4: \(\quad c_{i}^{(t+1)}(\vec{v}) \longleftarrow\left\{\left\{c^{(t)}(\vec{w}): w \in N_{i}(\vec{v})\right\} \forall \vec{V} \in V^{k}\right.\)
5: \(\quad c^{(t+1)}(\vec{v}) \longleftarrow\) hash \(\left(c^{(t)}(\vec{v}), c_{1}^{(t+1)}(\vec{v}), \ldots, c_{k}^{(t+1)}(\vec{v})\right) \forall \vec{v} \in V^{k}\)
6: Output: \(c^{(T)}(\vec{v}) \forall \vec{v} \in V^{k}\)
```

where hash $\left(x_{\vec{v}}\right)=\operatorname{hash}\left(x_{\vec{w}}\right)$ iff (a) $x_{v_{i}}=x_{w_{i}}$ and (b) $\left(v_{i}, v_{j}\right) \in E$ iff $\left(w_{i}, w_{j}\right) \in E$. N.B.: $N_{i}(\vec{v})=\left\{\left(v_{1}, \ldots, v_{i-1}, u, v_{i+1}, \ldots, v_{k}\right): u \in V\right\}$.

## Weisfeiler-Leman Hierarchies

## Weisfeiler-Leman Hierarchies

WL Test fails to distinguish the following graphs, whereas $5-\mathrm{WL}$ does not:


## Weisfeiler-Leman Hierarchies

WL Test fails to distinguish the following graphs, whereas $5-\mathrm{WL}$ does not:

$k-W L$ is strictly weaker than $(k+1)-\mathrm{WL}[\mathrm{HV} 21]$

## Weisfeiler-Leman Hierarchies

WL Test fails to distinguish the following graphs, whereas 5-WL does not:

$k-W L$ is strictly weaker than $(k+1)-W L[H V 21]$
However.. for every $k$, there is an infinite family of graphs for which the $k$-WL test fails[CFI92]

## Message Passing on Simplicial Complexes



Simplicial WL $\left[\mathrm{BFW}^{+} 21\right]: c^{t+1}(\sigma)=$ hash of coloring at $t$ of $\sigma$ and..

## Message Passing on Simplicial Complexes



Simplicial WL [BFW $\left.{ }^{+} 21\right]: c^{t+1}(\sigma)=$ hash of coloring at $t$ of $\sigma$ and.. coloring of its upper-neighbors, lower-neighbors, boundaries and coboundaries.

## Message Passing on Simplicial Complexes



Simplicial WL $\left[\mathrm{BFW}^{+} 21\right]: c^{t+1}(\sigma)=$ hash of coloring at $t$ of $\sigma$ and.. coloring of its upper-neighbors, lower-neighbors, boundaries and coboundaries.

SWL is strictly stronger than $3-\mathrm{WL}\left[\mathrm{BFW}^{+} 21\right]$

## Message Passing on Simplicial Complexes



Simplicial WL [BFW $\left.{ }^{+} 21\right]: c^{t+1}(\sigma)=$ hash of coloring at $t$ of $\sigma$ and.. coloring of its upper-neighbors, lower-neighbors, boundaries and coboundaries.

SWL is strictly stronger than $3-\mathrm{WL}\left[\mathrm{BFW}^{+} 21\right]$

## Lemma

For each $k \leq n$ and $a: V(G)^{k} \longrightarrow \mathbb{N}$ and $c: \mathcal{K} \longrightarrow \mathbb{N}$, where $\operatorname{dim} \mathcal{K}=n, S W L$ is strictly stronger than $k-W L$.

## Message Passing on Simplicial Complexes



Simplicial WL [BFW $\left.{ }^{+} 21\right]: c^{t+1}(\sigma)=$ hash of coloring at $t$ of $\sigma$ and.. coloring of its upper-neighbors, lower-neighbors, boundaries and coboundaries.

SWL is strictly stronger than $3-\mathrm{WL}\left[\mathrm{BFW}^{+} 21\right]$

## Lemma

For each $k \leq n$ and $a: V(G)^{k} \longrightarrow \mathbb{N}$ and $c: \mathcal{K} \longrightarrow \mathbb{N}$, where $\operatorname{dim} \mathcal{K}=n$, SWL is (almost) strictly stronger than $k-W L$.

## Can we get better directions?

## Can we get better directions?

## Algorithm Directed Weisfeiler-Leman (DWL)[MG21]

1: Input: $\left(V, E, X_{V}\right)$
2: $c(v)=c^{(0)}(v) \longleftarrow$ hash $\left(x_{v}\right)$
3: while $c^{(t)}(v)=c^{(t+1)}(v) \forall v \in V$ do
4: $\quad c^{(t+1)}(v) \longleftarrow \operatorname{hash}\binom{c^{(t)}(v),\left\{\left\{c^{(t)}(w): w \in N_{\text {in }}(v)\right\}\right.}{,\left\{\left\{c^{(t)}(u): w \in N_{\text {out }}(u)\right\}\right\}}$
5: Output: $c^{(T)}(v) \forall v \in V$

DWL is strictly stronger than $\mathrm{WL}\left[\mathrm{BFW}^{+} 21\right]$

Yes, we can

## $G_{1}$ <br>  <br> Directed Graph

Yes, we can


Directed Graph

## Yes, we can



## Directed Graph



Simplicial Set

## Yes, we can



## Simplicial Set WL

- Assign all simplices of every dimension of two simplicial sets the same initial color.


## Simplicial Set WL

- Assign all simplices of every dimension of two simplicial sets the same initial color.
- Update colors according to Simplicial Set Weisfeiler-Lehman Test (SSWL)


## Simplicial Set WL

- Assign all simplices of every dimension of two simplicial sets the same initial color.
- Update colors according to Simplicial Set Weisfeiler-Lehman Test (SSWL)
- If coloring distribution of the two simplicial sets is different, then the two simplicial sets are not isomorphic


## Simplicial Set WL

- Assign all simplices of every dimension of two simplicial sets the same initial color.
- Update colors according to Simplicial Set Weisfeiler-Lehman Test (SSWL)
- If coloring distribution of the two simplicial sets is different, then the two simplicial sets are not isomorphic


## Update rules for SSWL

$c^{t+1}(\sigma)=$ hash of coloring at $t$ of $\sigma$ and coloring of its

## Simplicial Set WL

- Assign all simplices of every dimension of two simplicial sets the same initial color.
- Update colors according to Simplicial Set Weisfeiler-Lehman Test (SSWL)
- If coloring distribution of the two simplicial sets is different, then the two simplicial sets are not isomorphic


## Update rules for SSWL

$c^{t+1}(\sigma)=$ hash of coloring at $t$ of $\sigma$ and coloring of its boundaries, coboundaries, upper-neighbors and lower-neighbors whenever $\sigma \in X_{k}$

## Simplicial Set WL

- Assign all simplices of every dimension of two simplicial sets the same initial color.
- Update colors according to Simplicial Set Weisfeiler-Lehman Test (SSWL)
- If coloring distribution of the two simplicial sets is different, then the two simplicial sets are not isomorphic


## Update rules for SSWL

$c^{t+1}(\sigma)=$ hash of coloring at $t$ of $\sigma$ and coloring of its $i$-th boundaries, $i$-th coboundaries, $i$-th upper-neighbors and $i$-th lower-neighbors for $0 \leq i \leq k$ whenever $\sigma \in X_{k}$

## Simplicial Set Weisfeiler-Leman Algorithm

SSWL is strictly stronger than $\mathrm{SWL}\left[\mathrm{BFW}^{+} 21\right]$

## Simplicial Set Weisfeiler-Leman Algorithm

SSWL is strictly stronger than SWL[BFW ${ }^{+}$21]


## Simplicial Set Weisfeiler-Leman Algorithm

SSWL is strictly stronger than SWL[BFW ${ }^{+}$21]


## Simplicial Set Weisfeiler-Leman Algorithm

SSWL is strictly stronger than SWL[BFW ${ }^{+}$21]


## Simplicial Set Weisfeiler-Leman Algorithm

SSWL is strictly stronger than SWL[BFW ${ }^{+}$21]


## Message Passing with Higher Dimensional Data

Summary:

$$
\begin{array}{ccc}
D W L & \sqsubset & W L \\
& & \sqcup \\
& & 3-W L \\
& & \sqcup \\
& & S W L
\end{array}
$$

## Message Passing with Higher Dimensional Data

Summary:

| $D W L$ | $\sqsubset$ | $W L$ |
| :---: | :---: | :---: |
| $\sqcup$ |  | $\sqcup$ |
| $?$ |  | $k-W L$ |
| $\sqcup$ |  | $\sqcup$ |
| $S S W L$ | $\sqsubset$ | $S W L$ |

## References I

國 Cristian Bodnar，Fabrizio Frasca，Yuguang Wang，Nina Otter，Guido F Montufar，Pietro Lio，and Michael Bronstein，Weisfeiler and lehman go topological：Message passing simplicial networks，International Conference on Machine Learning，PMLR，2021，pp．1026－1037．
氞 Jin－Yi Cai，Martin Fürer，and Neil Immerman，An optimal lower bound on the number of variables for graph identification，Combinatorica 12 （1992），no．4， 389－410．
－Glenn Fowler，Robert Haralick，F Gail Gray，Charles Feustel，and Charles Grinstead，Efficient graph automorphism by vertex partitioning，Artificial Intelligence 21 （1983），no．1－2，245－269．
國 Weihua Hu，Matthias Fey，Marinka Zitnik，Yuxiao Dong，Hongyu Ren，Bowen Liu，Michele Catasta，and Jure Leskovec，Open graph benchmark：Datasets for machine learning on graphs，arXiv preprint arXiv：2005．00687（2020）．

## References II

Ningyuan Teresa Huang and Soledad Villar, A short tutorial on the weisfeiler-lehman test and its variants, ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2021, pp. 8533-8537.
Will Hamilton, Zhitao Ying, and Jure Leskovec, Inductive representation learning on large graphs, Advances in neural information processing systems 30 (2017).
Thomas N Kipf and Max Welling, Semi-supervised classification with graph convolutional networks, IEEE Transactions on Neural Networks 20 (2008), no. 1, 61-80.
囯
Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman, Provably powerful graph networks, Advances in neural information processing systems 32 (2019).

## References III



Martin Mladenov Pascal Schweitzer Martin Grohe, Kristian Kersting, Color refinement and its applications, An Introduction to Lifted Probabilistic Inference (Sriraam Natarajan Davide Poole Guy Van den Broeck, Kristian Kersting, ed.), MIT Press, 2021.
Boris Weisfeiler and Andrei Leman, The reduction of a graph to canonical form and the algebra which appears therein, nti, Series 2 (1968), no. 9, 12-16.
围 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka, How powerful are graph neural networks?, arXiv preprint arXiv:1810.00826 (2018).

## Thank you!

