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Weisfeiler-Lehman Test[WL68]

Definition

A coloring of a (undirected) graph G = (V ,E ) is a function c : V −→ N.

Definition

A (perfect) hashing is any injective function.

Basic idea

start with c (v) = c(0) (v), and
c(t+1) (v) =hash

(
c(t) (v) , {{c(t) (w) : w ∈ N (v)}}

)
[WL68]

Weisfeiler-Lehman Test
If two graphs have different colorings, then the graphs are not isomorphic. Test is
inconclusive if coloring of graphs is the same[MBHSL19]
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Weisfeiler-Lehman Test[WL68]

Source:
https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/
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Weisfeiler-Leman Algorithm[WL68]

Recall..

A coloring of a graph G = (V ,E ) at iteration t is a function c(t) : V −→ N. A
(perfect) hashing is any injective function.

Algorithm Weisfeiler-Leman (WL) or Naive vertex refinement[WL68]

1: Input: (V ,E ,XV ) Here, xv ∈ Zd
2

2: c (v) = c(0) (v)←− hash (xv )
3: while c(t) (v) = c(t+1) (v) ∀v ∈ V do
4: c(t+1) (v)←−hash

(
c(t) (v) , {{c(t) (w) : w ∈ N (v)}}

)
5: Output: c(T ) (v) ∀v ∈ V

Secretly message passing!

Abdullah Naeem Malik (FSU) Colloquium Talk April 15, 2024 4 / 20



Weisfeiler-Leman Algorithm[WL68]

Recall..

A coloring of a graph G = (V ,E ) at iteration t is a function c(t) : V −→ N. A
(perfect) hashing is any injective function.

Algorithm Weisfeiler-Leman (WL) or Naive vertex refinement[WL68]

1: Input: (V ,E ,XV ) Here, xv ∈ Zd
2

2: c (v) = c(0) (v)←− hash (xv )
3: while c(t) (v) = c(t+1) (v) ∀v ∈ V do
4: c(t+1) (v)←−hash

(
c(t) (v) , {{c(t) (w) : w ∈ N (v)}}

)
5: Output: c(T ) (v) ∀v ∈ V

Secretly message passing!

Abdullah Naeem Malik (FSU) Colloquium Talk April 15, 2024 4 / 20



Weisfeiler-Leman Algorithm[WL68]

Recall..

A coloring of a graph G = (V ,E ) at iteration t is a function c(t) : V −→ N. A
(perfect) hashing is any injective function.

Algorithm Weisfeiler-Leman (WL) or Naive vertex refinement[WL68]

1: Input: (V ,E ,XV ) Here, xv ∈ Zd
2

2: c (v) = c(0) (v)←− hash (xv )
3: while c(t) (v) = c(t+1) (v) ∀v ∈ V do
4: c(t+1) (v)←−hash

(
c(t) (v) , {{c(t) (w) : w ∈ N (v)}}

)
5: Output: c(T ) (v) ∀v ∈ V

Secretly message passing!

Abdullah Naeem Malik (FSU) Colloquium Talk April 15, 2024 4 / 20



Message passing in Graph

Neural Networks

x
(k+1)
v =COMBINE

(
x
(k)
v ,AGGREGATE(k+1)

({
x
(k)
u : u ∈ N (v)

}))
F out = ψ ◦ ((AW + I )F ) .

ψ : R −→ R
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Examples of Message Passing

AGGREGATE COMBINE Ref

MAX
({
σ
(
W1.x

(k)
u

)}
, u ∈ N (v)

)
W2.

[
x
(k)
v , a

(k+1)
v

]
GraphSAGE[HYL17]

W1.MEAN
(
x
(k)
u , u ∈ N (v) ∪ {v}

)
σ
({

W2.a
(k+1)
v

})
GCN[KW08]

Abdullah Naeem Malik (FSU) Colloquium Talk April 15, 2024 6 / 20



Message passing in Graph Neural Networks

How powerful are graph neural networks?[MBHSL19, XHLJ18]

Theorem
Let G1 and G2 be any two non-isomorphic graphs. If a graph neural network
f : G −→Rd maps G1 and G2 to different embeddings, the Weisfeiler-Leman graph
isomorphism test also decides G1 and G2 are not isomorphic. Converse holds if
COMBINE and AGGREGATE are injective[XHLJ18].

Proof sketch
Compare

x
(k+1)
v =COMBINE

(
x
(k)
v ,AGGREGATE(k+1)

({
x
(k)
u : u ∈ N (v)

}))
with
c(t+1) (v) =hash

(
c(t) (v) , {{c(t) (w) : w ∈ N (v)}}

)
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Limits of WL Test

WL Test fails to distinguish the following graphs:

v1

v2

v3

v4

v5

v1

v2

v3

v4
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k-Weisfeiler-Leman Algorithm

Algorithm k-Weisfeiler-Leman (k-WL)

1: Input: (V ,E ,XV ) Here, xv ∈ Zd
2

2: c
(−→v )

= c(0)
(−→v )

←− hash (x−→v )

3: while c(t)
(−→v )

= c(t+1)
(−→v )

∀−→v ∈ V k do

4: c
(t+1)
i

(−→v )
←− {{c(t)

(−→w )
: w ∈ Ni

(−→v )
}} ∀−→v ∈ V k

5: c(t+1)
(−→v )

←− hash
(
c(t)

(−→v )
, c

(t+1)
1

(−→v )
, ..., c

(t+1)
k

(−→v ))
∀−→v ∈ V k

6: Output: c(T )
(−→v )

∀−→v ∈ V k

where hash(x−→v ) = hash(x−→w ) iff (a) xvi = xwi and (b) (vi , vj) ∈ E iff (wi ,wj) ∈ E .
N.B.: Ni

(−→v )
= {(v1, ..., vi−1, u, vi+1, ..., vk) : u ∈ V }.
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Weisfeiler-Leman Hierarchies

WL Test fails to distinguish the following graphs, whereas 5-WL does not:

v1

v2

v3

v4

v5

v1

v2

v3

v4

k-WL is strictly weaker than (k + 1)-WL[HV21]

However.. for every k, there is an infinite family of graphs for which the k-WL
test fails[CFI92]
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Message Passing on Simplicial Complexes

classifying trajectories on simplicial meshes, which we represent as edge-flows. Within

this setting, we demonstrate the importance of capturing the cochain complex structure

and being equivariant to changes in orientation in order to learn models that generalise.

3.1 Model overview

Abstractly, a message passing GNN over a graph G is a function f : C0(G,R)F →
C0(G,R)F

′
mapping F scalar functions over the nodes into another set of F′ scalar

functions. In this section, we propose Message Passing Simplicial Networks, which

are functions between cochain complexes f : C•(K,R)F → C•(K,R)F
′

over a simplicial

complex K . Such a model does not only take the 0-forms into account but all the

discrete differential k-forms defined on the complex and the way they are connected

via the coboundary operator δ.

Figure 3.1: Message Passing Simplicial Networks. The figure shows the four types of
message functions for a selection of simplices in the complex.

MPSNs compute neural representations of the cochain complex by passing messages

between the simplices of the complex. The (co)boundary map, which describes the

incidence relations between simplices, determines the structure of the message passing

procedure. As seen in Chapter 2, the two terms of the Hodge Laplacian, given by

∆k = δk−1δ
⋆
k−1 + δ⋆kδk, induce two types of adjacencies between k-simplices. The down

Laplacian considers two k-simplices to be lower adjacent if they have a common face.

Similarly, the sparsity pattern of the up Laplacian specifies when two simplices are

faces of the same simplex. Besides these adjacencies between simplices of the same

dimension given by the composition of δ and its adjoint, the coboundary operator itself

δ and its adjoint ∂ = δ∗ also encode relations between simplices of co-dimension one. In

total, we have four types of topologically-motivated adjacencies between simplices.

This adjacency structure also mirrors the “factorisation” of the cochain vector spaces

provided by the Hodge Decomposition from Theorem 2.25. Boundary and lower adja-

cencies capture the relations between k-cochains and (k−1)-cochains, while coboundary

70

Image from [BFW+21]

Simplicial WL [BFW+21]: c t+1 (σ) =hash of coloring at t of σ and..

coloring of
its upper-neighbors, lower-neighbors, boundaries and coboundaries.

SWL is strictly stronger than 3-WL[BFW+21]

Lemma

For each k ≤ n and a : V (G )k −→ N and c : K −→ N, where dimK = n, SWL is

(almost)

strictly stronger than k-WL.
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total, we have four types of topologically-motivated adjacencies between simplices.

This adjacency structure also mirrors the “factorisation” of the cochain vector spaces

provided by the Hodge Decomposition from Theorem 2.25. Boundary and lower adja-

cencies capture the relations between k-cochains and (k−1)-cochains, while coboundary

70

Image from [BFW+21]

Simplicial WL [BFW+21]: c t+1 (σ) =hash of coloring at t of σ and.. coloring of
its upper-neighbors, lower-neighbors, boundaries and coboundaries.

SWL is strictly stronger than 3-WL[BFW+21]

Lemma

For each k ≤ n and a : V (G )k −→ N and c : K −→ N, where dimK = n, SWL is
(almost) strictly stronger than k-WL.
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Can we get better directions?

Algorithm Directed Weisfeiler-Leman (DWL)[MG21]

1: Input: (V ,E ,XV ) Here, xv ∈ Zd
2

2: c (v) = c(0) (v)←− hash (xv )
3: while c(t) (v) = c(t+1) (v) ∀v ∈ V do

4: c(t+1) (v)←−hash
(

c(t) (v) , {{c(t) (w) : w ∈ Nin (v)}},
{{c(t) (u) : w ∈ Nout (u)}}

)
5: Output: c(T ) (v) ∀v ∈ V

DWL is strictly stronger than WL[BFW+21]
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Yes, we can
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Simplicial Set WL

Assign all simplices of every dimension of two simplicial sets the same initial
color.

Update colors according to Simplicial Set Weisfeiler-Lehman Test (SSWL)

If coloring distribution of the two simplicial sets is different, then the two
simplicial sets are not isomorphic

Update rules for SSWL

c t+1 (σ) =hash of coloring at t of σ and coloring of its

i-th

boundaries,

i-th

coboundaries,

i-th

upper-neighbors and

i-th

lower-neighbors

for 0 ≤ i ≤ k

whenever σ ∈ Xk
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Simplicial Set Weisfeiler-Leman Algorithm

SSWL is strictly stronger than SWL[BFW+21]
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Message Passing with Higher Dimensional Data

Summary:

DWL ⊏ WL

⊔

⊔

?

3

k

-WL

⊔

⊔

SSWL ⊏

SWL
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Thank you!
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