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Abstract: We show that orthomodularity in general and non-existence of
isotropic vectors in particular decisively yield the geometry of quantum
mechanics and that a fundamental reason why quantum mechanics and
relativity cannot be uni�ed is because of the non-existence of isotropic
vectors.
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Completeness

Completeness for Einstein = idea of pure state

Completeness of Bohr = compatible observables

=) ω (A) = Tr (ρA) = hx,Axi

@ω : B (H) �! K such that ω (AB) = ω (A)ω (B)
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I would like to make a confession which may seem immoral: I do
not believe absolutely in Hilbert space any more. After all,
Hilbert space was obtained by generalising Euclidean space,
footing on the principle of �conserving the validity of all formal
rules�. Now we begin to believe that it is not the vectors which
matter, but the lattice of all linear (closed) subspaces. Because:
1) The vectors ought to represent the physical states, but they
do it redundantly, up to a complex factor, only 2) and besides,
the states are merely a derived notion, the primitive
(phenomenologically given) notion being the qualities which
correspond to the linear closed subspaces [3].
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Issues

(0,1)+(1,0)p
2

� (0,1)�i (1,0)p
2

Why C?[4][3]

Why linear operators when measurement is non-linear?[1]

Why separable?[2] (uncountable eigenvectors)

Why associative law? [5]
Hilbert spaces vs Semi-norm spaces
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Issues

x 6= 0 is said to be isotropic if hx, xi = 0
Minkowski product for x, y 2 R4 is hx, yi = x1y2 + x2y2 + x3y3 � x4y4
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Outline

Our focus: skew �elds K and seminorm spaces

Outcomes: Riesz Representation Theorem (on an incomplete space)

Outcomes: Isotropic vectors are important

Outcomes: No non-Archimedean �elds for Quantum Mechanics

Outcomes: Multivalued operators are forced to be single-valued
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Mappings

De�nition
Let X be a vector space over F and Y be vector space over K and let
φ : F �! K be a homomorphism. Then, an operator T : X �! Y is a
φ-vector space homomorphism between X and Y if for all x, y 2 X and
scalars α 2 F, T (αx+ βy) = φ (α)T (x) + φ (β)T (y). T is an
isomorphism if T and φ are bijective. A φ-algebra homomorphism is of
the form T ((αx) (βy)) = T (αβxy) = φ (αβ)T (x)T (y), which we shall
call an isomorphism if φ and T are bijective.

De�nition
T = f(x, z) : x 2 V , z 2 W g is a relation, then
(αx+ βy)Tz = φ (α) xTz+ φ (β) yTz.

Lemma
Preservation of multiplicative linear independence if T is injective (not φ)
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Axioms for seminorm space N

kxk = 0 =) x = 0 (non-degeneracy)

kαxk = jαj kxk for all α 2 K, 8x 2 N (homogeneity)
kx+ yk � kxk+ kyk for arbitrary x, y 2 N or
kx+ yk � max (kxk , kyk)
Seminorm from underlying �eld: kxk := jg (x)j
Outcomes: k0k = 0, kxk = k�xk and kxk � 0
Norm: N/W where W =set v s.t. kvk = 0

x2

 = kxk2 =) kxyk � kxk kyk[4] =) kek � 1

Axiom of choice!
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Sesquilinear forms

De�nition
Let X be a vector space over K. A f -sesquilinear 2-form is a function
ϕ : X�X �! K such that 8α 2 K and 8x, y, z 2 X

ϕ (x+ y, z) = ϕ (x, z) + ϕ (y, z)

ϕ (x, y+ z) = ϕ (x, y) + ϕ (x, z)
ϕ (x, αy) = ϕ (x, y) α

ϕ (αx, y) = f (α) ϕ (x, y) where f : K �! K is an involutive
anti-automorphism.

Outcomes: ϕ (0, y) = ϕ (x, 0) = 0,
charK =2 implies ϕ (v, v) = 0 () ϕ (v,w) = �ϕ (w, v),
ϕ (x, y) = f (ϕ (y, x)) () ϕ (x, x) 2 R and
ϕ(x, x)ϕ(y, y) � ϕ(x, y)ϕ(y, x) if ϕ (x, x) � 0
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Sesquilinear forms

Lemma

ϕ (x, x) := kxk2 for ϕ=Hermitian and jf (α)j = jαj

Proof.

kαxk2 = jαj2 kxk2 and kx+ yk2
� jϕ (x, x)j+ jϕ (x, y)j+ jϕ (y, x)j+ jϕ (y, y)j � (kxk+ kyk)2
� max (jϕ (x, x)j , jϕ (x, y)j , jϕ (y, x)j , jϕ (y, y)j). Now, if
ϕ (x, y) = a+ b for a, b 2 K for f (a) = a and f (b) 6= b, then
jaj,jbj � kxk kyk [1] =) max fjaj , jbjg � kxk kyk so that
max (jϕ (x, x)j , jϕ (y, x)j , jϕ (y, y)j) = max fkxk , kykg
If x 6= 0 implies ϕ (x, x) > 0, then N1

jϕ (x, y)j � m kxk kyk =) ϕ (xn, yn) �! ϕ (x, y)
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Closed subspaces and associated algebra[2]

A 7�! A?? =) A � A??, A � B =) A?? � B?? and
A???? = A??

Theorem

A?? is the smallest subspace containing A

Proof.

Assume there exists a closed B such that A � B � A??. Then, B = B??
and A � B?? � A?? so that B? � A? and A??? = A? � B? and
hence B?? = A??.

Theorem

A closed relation (T = T??) T is linear
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Closed subspaces and associated algebra[2]

Proof.
T is a subspace of X � X . Plus T (αx) = f (α)T (x) if
α (x, y) := (αx, f (α) y)

Theorem
If T is closed, then ker (T ) is closed

T + S = f(x, y) : y = s+ t for s 2 R (S) , t 2 R (T )g
T � S = TS = f(x, z) : (x, y) 2 S and (y, z) 2 T for some yg
O = f(x, 0)g, I = f(x, x)g and λT = f(x,λy) : (x, y) 2 Tg
RS + RT � R (S + T ). Converse holds if D (R) = X
(S + T )R � SR + TR. Converse holds if R is single-valued.
kerT = ker S and R (S) = R (T ), then S � T implies S = T .
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T + S = f(x, y) : y = s+ t for s 2 R (S) , t 2 R (T )g
T � S = TS = f(x, z) : (x, y) 2 S and (y, z) 2 T for some yg
O = f(x, 0)g, I = f(x, x)g and λT = f(x,λy) : (x, y) 2 Tg
RS + RT � R (S + T ). Converse holds if D (R) = X
(S + T )R � SR + TR. Converse holds if R is single-valued.
kerT = ker S and R (S) = R (T ), then S � T implies S = T .
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Closed subspaces and associated algebra[2]

Theorem
A single-valued, linear adjoint of T will always exist

Proof.
U : X � X �! X � X by U (x, y) := (�y, x). Well-de�ned+bijective.
Φ (z,w) := (ϕ� ϕ) (z,w)X�X = ϕ (z1,w1) + ϕ (z2,w2)
=) Φ (U (z) ,w) = Φ

�
z,U�1 (w)

�
For M � X � X , T � = U

�
M?� = U (M)?

ϕ (Tx, y) = ϕ (x,T �w) for (x, z) 2 T and (y,w) 2 T �

Outcomes kerT � = R (T )?, (λT )� = f (λ)T �,
�
T�1

��
= (T �)�1,

T � =
�
�T�1

�?, T � = ��T�1�?
Outcomes D (T )?? = E () T � is single-valued
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Closed subspaces and associated algebra[2]

Canonical � operation?

We need �(a+ b) = � (a) + � (b), � (αa) = f (α) � (a),
� (� (a)) = a, � (ab) = � (b) � (a).
Possible if � (x) = �

�
∑ αijvivj

�
= ∑ f (αij ) vivj provided

jf (α)j = jαj
=) k�k = 1 =) ka�ak � kak2

Question: what seminorm on Bφ (X )?

kTk = lim sup
kxk!∞

kT xk
kxk =) kRTk � kRk kTk[5]

kTk = sup
kxk6=0

kT xk
kxk =) kRTk � kRk kTk (care for

kαTk = jφ (α)j kTk)
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Properties of operator algebra

Theorem
A unital Weak Banach algebra (X , k.k) is a complete subalgebra of Bφ (X )

Proof.
Lx (y) := xy. Then, Lx 2 Bφ(X ). Then, L : X �! Bφ (X ) as L (x) = Lx
is a homomorphism and kxko := kLxk is equivalent to k.k

Theorem
There are no multiplicative linear functionals on Bφ(X )

Proof: 8λ 2 K, λI2Bφ (X ) =) g (I ) = e. Consider orthogonal
projection operators P and Q 2 Bφ (X ) s.t. dimP (X ) = dimQ (X ).
Then, T : P (X ) �! Q (X ), a partial isometry such that P = T �T ,
Q = TT � so that PQ = 0 =) g (Q) = g (P) = 0. Further,
P +Q = I =) e = g (I ) = g(P) + g(Q) = 0
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Riesz Representation Theorem on Hermitian Spaces[2]

Theorem
9 cts linear functional g : (X , ϕ,K) �! X � such that R(g) = X 0.

g is cts:=ker g = ker g??

Proof.
gy : X �! X � s.t. gy (x) = ϕ (y, x)
(injective+well-de�ne) =) R (g) � X 0

. gy cts since
ker gy = fky : k 2 Kg?
Conversely, for h 2 X 0, h = 0 =) g0 = h =) h 2 R (g).
h 6= 0 =) dim h = 1

=) X = ker h� fkv : k 2 Kg. Letting w = f �1
�

ϕ (v, z)�1 h (v)
�
z

for z 2 ker h? and z 62 fkv : k 2 Kg? gives us h (v) = ϕ (v,w).
X 3 x = x1 + αv =) h (x) = αh (v) =) ϕ (x,w) = αϕ (v,w) =)
h = gw
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Riesz Representation Theorem on Hermitian Spaces[2]

Corollary

Kernel of each element of g (A) is splitting.

F � X splitting if X = F � F?, A= collection of anisotropic vectors

Proof.

If y is anisotropic, then y 62 fky : k 2 Kg? so
ker gy = fky : k 2 Kg? =) X = ker gy � ker g?y

Corollary
ϕ admits nonzero isotropic vectors, then there are closed subspaces of X
that are not splitting.

Proof.
If 0 6= y 2 X such that ϕ (y, y) = 0, then
fky : k 2 Kg � fky : k 2 Kg? � X
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Orthomodularity

De�nition

A space X is orthomodular if for all closed F � X , X = F � F?

De�nition
A lattice L is orthomodular if x � z implies x _ (x 0 ^ z) = z for all
x , z 2L

Theorem
X is orthomodular() L=C(X ) is orthomodular

If a Hermitian space is orthomodular, then hF i = F?? and such sets
form atomic ortholattice which is isomorphic to the lattice of closed
subspaces of a Hilbert space over an arbitrary Archimedean skew
�eld[6].
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Solr�s theorem

Theorem
Let (X ,K, ϕ) be an in�nite dimensional orthomodular space over a skew
�eld K which contains an orthonormal system (ei )i2N. Then K is either
R, C or H and (X ,K, ϕ) is a Hilbert space [4]

Proof.
nx = h∑n

i=0 ei i x = 0 () h∑n
i=0 ei i = 0 () n = 0

=) Q � K

8 (αi )i2N� 2 QN�
with α := ∑∞

i=0 α2i 2 Q, then 9x = ∑i2N� αiei 2 X ,
with hxi = α
De�ne ∑∞

i=0 α2i 7�! h∑i2N αiei i
This is multiplicative linear function so that R � K

=) (αi )i2N 2 l2 (R) with α := ∑∞
i=0 α2i , 9x = ∑i2N αiei 2 X such that

hai = α
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i=0 α2i , 9x = ∑i2N αiei 2 X such that

hai = α
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Solr�s theorem

Proof.
(cotd.)
Next, R � Z = fx j xy = yx , 8y 2 Kg =) R =S (K) using

S � P :=
�
hxi j 0 6= x = ∑

i2N

ξ iei , ξ i 2 R(γ)8i 2 N and hxi 2 R(γ)

�
where γ 2 S
λ 2 K nR =) R(λ) �= C

λ 2 K nC =) C+Cλ �= H =)
λ 2 K nH =) H+Hλ �= H, contradiction
Hence X �= l2(K) and K = R, C or H
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Conclusion

Orthomodularity is important

=) exclusion of non-Archimedean �elds

(= Non-existence of isotropic vectors

Abdullah (CIIT) Orthomodularity and the incompatibility of relativity and quantum mechanicsApril 27, 2017 22 / 25



Conclusion

Orthomodularity is important

=) exclusion of non-Archimedean �elds

(= Non-existence of isotropic vectors

Abdullah (CIIT) Orthomodularity and the incompatibility of relativity and quantum mechanicsApril 27, 2017 22 / 25



Conclusion

Orthomodularity is important

=) exclusion of non-Archimedean �elds

(= Non-existence of isotropic vectors

Abdullah (CIIT) Orthomodularity and the incompatibility of relativity and quantum mechanicsApril 27, 2017 22 / 25



Future Work

Over which non-Archimedean �elds are Hermitian spaces
orthomodular?

Does there exist a (countable?) eigenbasis decomposition of a
non-linear operator on a Hermitian space over a non-Archimedean
�eld?
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