## Orthomodularity and the incompatibility of relativity and

 quantum mechanicsAbdullah Naeem Malik
$3^{\text {rd }}$ National Conference on Mathematical Sciences, IIUI

Mathematics Department, COMSATS Institute of Information Technology, Virtual Campus
April 27, 2017

## Publication:

Malik, A. N., Kamran, T. (2016) Orthomodularity and the incomaptibility of relativity and quantum mechanics. Quantum Stud.: Math. Found., pp. $1-9$. doi:10.1007/s40509-016-0092-8. Springer

Abstract: We show that orthomodularity in general and non-existence of isotropic vectors in particular decisively yield the geometry of quantum mechanics and that a fundamental reason why quantum mechanics and relativity cannot be unified is because of the non-existence of isotropic vectors.

## Completeness

- Completeness for Einstein $=$ idea of pure state
- Completeness of Bohr $=$ compatible observables
- $\Longrightarrow \omega(A)=\operatorname{Tr}(\rho A)=\langle\mathbf{x}, A \mathbf{x}\rangle$
- $\exists \omega: B(\mathcal{H}) \longrightarrow \mathbb{K}$ such that $\omega(A B)=\omega(A) \omega(B)$

I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space any more. After all, Hilbert space was obtained by generalising Euclidean space, footing on the principle of 'conserving the validity of all formal rules'. Now we begin to believe that it is not the vectors which matter, but the lattice of all linear (closed) subspaces. Because:

1) The vectors ought to represent the physical states, but they do it redundantly, up to a complex factor, only 2) and besides, the states are merely a derived notion, the primitive (phenomenologically given) notion being the qualities which correspond to the linear closed subspaces [3].

## Issues

- $\frac{(0,1)+(1,0)}{\sqrt{2}} \equiv \frac{(0,1)-i(1,0)}{\sqrt{2}}$
- Why $\mathbb{C} ?[4][3]$
- Why linear operators when measurement is non-linear?[1]
- Why separable?[2] (uncountable eigenvectors)
- Why associative law? [5]
- Hilbert spaces vs Semi-norm spaces


## Issues

- $\mathbf{x} \neq 0$ is said to be isotropic if $\langle\mathbf{x}, \mathbf{x}\rangle=0$
- Minkowski product for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{4}$ is $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{2}+x_{2} y_{2}+x_{3} y_{3}-x_{4} y_{4}$


## Outline

- Our focus: skew fields $\mathbb{K}$ and seminorm spaces


## Outline

- Our focus: skew fields $\mathbb{K}$ and seminorm spaces

Outcomes: Riesz Representation Theorem (on an incomplete space)

## Outline

- Our focus: skew fields $\mathbb{K}$ and seminorm spaces

Outcomes: Riesz Representation Theorem (on an incomplete space)
Outcomes: Isotropic vectors are important

## Outline

- Our focus: skew fields $\mathbb{K}$ and seminorm spaces

Outcomes: Riesz Representation Theorem (on an incomplete space)
Outcomes: Isotropic vectors are important
Outcomes: No non-Archimedean fields for Quantum Mechanics

## Outline

- Our focus: skew fields $\mathbb{K}$ and seminorm spaces

Outcomes: Riesz Representation Theorem (on an incomplete space)
Outcomes: Isotropic vectors are important
Outcomes: No non-Archimedean fields for Quantum Mechanics
Outcomes: Multivalued operators are forced to be single-valued

## Mappings

## Definition

Let $X$ be a vector space over $\mathbb{F}$ and $Y$ be vector space over $\mathbb{K}$ and let $\phi: \mathbb{F} \longrightarrow \mathbb{K}$ be a homomorphism. Then, an operator $T: X \longrightarrow Y$ is a $\phi$-vector space homomorphism between $X$ and $Y$ if for all $\mathbf{x}, \mathbf{y} \in X$ and scalars $\alpha \in \mathbb{F}, T(\alpha \mathbf{x}+\beta \mathbf{y})=\phi(\alpha) T(\mathbf{x})+\phi(\beta) T(\mathbf{y})$. $T$ is an isomorphism if $T$ and $\phi$ are bijective. A $\phi$-algebra homomorphism is of the form $T((\alpha \mathbf{x})(\beta \mathbf{y}))=T(\alpha \beta \mathbf{x y})=\phi(\alpha \beta) T(\mathbf{x}) T(\mathbf{y})$, which we shall call an isomorphism if $\phi$ and $T$ are bijective.

## Mappings

## Definition

Let $X$ be a vector space over $\mathbb{F}$ and $Y$ be vector space over $\mathbb{K}$ and let $\phi: \mathbb{F} \longrightarrow \mathbb{K}$ be a homomorphism. Then, an operator $T: X \longrightarrow Y$ is a $\phi$-vector space homomorphism between $X$ and $Y$ if for all $\mathbf{x}, \mathbf{y} \in X$ and scalars $\alpha \in \mathbb{F}, T(\alpha \mathbf{x}+\beta \mathbf{y})=\phi(\alpha) T(\mathbf{x})+\phi(\beta) T(\mathbf{y})$. $T$ is an isomorphism if $T$ and $\phi$ are bijective. A $\phi$-algebra homomorphism is of the form $T((\alpha \mathbf{x})(\beta \mathbf{y}))=T(\alpha \beta \mathbf{x y})=\phi(\alpha \beta) T(\mathbf{x}) T(\mathbf{y})$, which we shall call an isomorphism if $\phi$ and $T$ are bijective.

## Definition

$T=\{(\mathbf{x}, \mathbf{z}): \mathbf{x} \in V, \mathbf{z} \in W\}$ is a relation, then $(\alpha \mathbf{x}+\beta \mathbf{y}) T \mathbf{z}=\phi(\alpha) \mathbf{x} T \mathbf{z}+\phi(\beta) \mathbf{y} T \mathbf{z}$.

## Mappings

## Definition

Let $X$ be a vector space over $\mathbb{F}$ and $Y$ be vector space over $\mathbb{K}$ and let $\phi: \mathbb{F} \longrightarrow \mathbb{K}$ be a homomorphism. Then, an operator $T: X \longrightarrow Y$ is a $\phi$-vector space homomorphism between $X$ and $Y$ if for all $\mathbf{x}, \mathbf{y} \in X$ and scalars $\alpha \in \mathbb{F}, T(\alpha \mathbf{x}+\beta \mathbf{y})=\phi(\alpha) T(\mathbf{x})+\phi(\beta) T(\mathbf{y})$. $T$ is an isomorphism if $T$ and $\phi$ are bijective. A $\phi$-algebra homomorphism is of the form $T((\alpha \mathbf{x})(\beta \mathbf{y}))=T(\alpha \beta \mathbf{x y})=\phi(\alpha \beta) T(\mathbf{x}) T(\mathbf{y})$, which we shall call an isomorphism if $\phi$ and $T$ are bijective.

## Definition

$T=\{(\mathbf{x}, \mathbf{z}): \mathbf{x} \in V, \mathbf{z} \in W\}$ is a relation, then $(\alpha \mathbf{x}+\beta \mathbf{y}) T z=\phi(\alpha) \mathbf{x} T \mathbf{z}+\phi(\beta) \mathbf{y} T \mathbf{z}$.

## Lemma

Preservation of multiplicative linear independence if $T$ is injective (not $\phi$ )

## Axioms for seminorm space N

- $\|\mathbf{x}\|=0 \Longrightarrow \mathbf{x}=0$ (non-degeneracy)
- $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for all $\alpha \in \mathbb{K}, \forall \mathbf{x} \in N$ (homogeneity)
- $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ for arbitrary $\mathbf{x}, \mathbf{y} \in N$ or $\|\mathbf{x}+\mathbf{y}\| \leq \max (\|\mathbf{x}\|,\|\mathbf{y}\|)$
- Seminorm from underlying field: $\|\mathbf{x}\|:=|g(\mathbf{x})|$
- Outcomes: $\|\mathbf{0}\|=0,\|\mathbf{x}\|=\|-\mathbf{x}\|$ and $\|\mathbf{x}\| \geq 0$
- Norm: $N / W$ where $W=$ set $\mathbf{v}$ s.t. $\|\mathbf{v}\|=0$
- $\left\|\mathbf{x}^{2}\right\|=\|\mathbf{x}\|^{2} \Longrightarrow\|x y\| \leq\|x\|\|y\|[4] \Longrightarrow\|\mathbf{e}\| \geq 1$


## Axioms for seminorm space N

- $\|\mathbf{x}\|=0 \Longrightarrow \mathbf{x}=0$ (non-degeneracy)
- $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for all $\alpha \in \mathbb{K}, \forall \mathbf{x} \in N$ (homogeneity)
- $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ for arbitrary $\mathbf{x}, \mathbf{y} \in N$ or $\|\mathbf{x}+\mathbf{y}\| \leq \max (\|\mathbf{x}\|,\|\mathbf{y}\|)$
- Seminorm from underlying field: $\|\mathbf{x}\|:=|g(\mathbf{x})|$
- Outcomes: $\|\mathbf{0}\|=0,\|\mathbf{x}\|=\|-\mathbf{x}\|$ and $\|\mathbf{x}\| \geq 0$
- Norm: $N / W$ where $W=$ set $\mathbf{v}$ s.t. $\|\mathbf{v}\|=0$
- $\left\|\mathbf{x}^{2}\right\|=\|\mathbf{x}\|^{2} \Longrightarrow\|x y\| \leq\|x\|\|y\|[4] \Longrightarrow\|\mathbf{e}\| \geq 1$
- Axiom of choice!


## Sesquilinear forms

## Definition

Let $X$ be a vector space over $\mathbb{K}$. A $f$-sesquilinear 2-form is a function $\varphi: X \times X \longrightarrow \mathbb{K}$ such that $\forall \alpha \in \mathbb{K}$ and $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in X$

- $\varphi(\mathbf{x}+\mathbf{y}, \mathbf{z})=\varphi(\mathbf{x}, \mathbf{z})+\varphi(\mathbf{y}, \mathbf{z})$


## Sesquilinear forms

## Definition

Let $X$ be a vector space over $\mathbb{K}$. A $f$-sesquilinear $\mathbf{2}$-form is a function $\varphi: X \times X \longrightarrow \mathbb{K}$ such that $\forall \alpha \in \mathbb{K}$ and $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in X$

- $\varphi(\mathbf{x}+\mathbf{y}, \mathbf{z})=\varphi(\mathbf{x}, \mathbf{z})+\varphi(\mathbf{y}, \mathbf{z})$
- $\varphi(\mathbf{x}, \mathbf{y}+\mathbf{z})=\varphi(\mathbf{x}, \mathbf{y})+\varphi(\mathbf{x}, \mathbf{z})$


## Sesquilinear forms

## Definition

Let $X$ be a vector space over $\mathbb{K}$. A $f$-sesquilinear $\mathbf{2}$-form is a function $\varphi: X \times X \longrightarrow \mathbb{K}$ such that $\forall \alpha \in \mathbb{K}$ and $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in X$

- $\varphi(\mathbf{x}+\mathbf{y}, \mathbf{z})=\varphi(\mathbf{x}, \mathbf{z})+\varphi(\mathbf{y}, \mathbf{z})$
- $\varphi(\mathbf{x}, \mathbf{y}+\mathbf{z})=\varphi(\mathbf{x}, \mathbf{y})+\varphi(\mathbf{x}, \mathbf{z})$
- $\varphi(\mathbf{x}, \alpha \mathbf{y})=\varphi(\mathbf{x}, \mathbf{y}) \alpha$


## Sesquilinear forms

## Definition

Let $X$ be a vector space over $\mathbb{K}$. A $f$-sesquilinear $\mathbf{2}$-form is a function $\varphi: X \times X \longrightarrow \mathbb{K}$ such that $\forall \alpha \in \mathbb{K}$ and $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in X$

- $\varphi(\mathbf{x}+\mathbf{y}, \mathbf{z})=\varphi(\mathbf{x}, \mathbf{z})+\varphi(\mathbf{y}, \mathbf{z})$
- $\varphi(\mathbf{x}, \mathbf{y}+\mathbf{z})=\varphi(\mathbf{x}, \mathbf{y})+\varphi(\mathbf{x}, \mathbf{z})$
- $\varphi(\mathbf{x}, \alpha \mathbf{y})=\varphi(\mathbf{x}, \mathbf{y}) \alpha$
- $\varphi(\alpha \mathbf{x}, \mathbf{y})=f(\alpha) \varphi(\mathbf{x}, \mathbf{y})$ where $f: \mathbb{K} \longrightarrow \mathbb{K}$ is an involutive anti-automorphism.


## Sesquilinear forms

## Definition

Let $X$ be a vector space over $\mathbb{K}$. A $f$-sesquilinear $\mathbf{2}$-form is a function $\varphi: X \times X \longrightarrow \mathbb{K}$ such that $\forall \alpha \in \mathbb{K}$ and $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in X$

- $\varphi(\mathbf{x}+\mathbf{y}, \mathbf{z})=\varphi(\mathbf{x}, \mathbf{z})+\varphi(\mathbf{y}, \mathbf{z})$
- $\varphi(\mathbf{x}, \mathbf{y}+\mathbf{z})=\varphi(\mathbf{x}, \mathbf{y})+\varphi(\mathbf{x}, \mathbf{z})$
- $\varphi(\mathbf{x}, \alpha \mathbf{y})=\varphi(\mathbf{x}, \mathbf{y}) \alpha$
- $\varphi(\alpha \mathbf{x}, \mathbf{y})=f(\alpha) \varphi(\mathbf{x}, \mathbf{y})$ where $f: \mathbb{K} \longrightarrow \mathbb{K}$ is an involutive anti-automorphism.
- Outcomes: $\varphi(\mathbf{0}, \mathbf{y})=\varphi(\mathbf{x}, \mathbf{0})=0$,
char $\mathbb{K}=2$ implies $\varphi(\mathbf{v}, \mathbf{v})=0 \Longleftrightarrow \varphi(\mathbf{v}, \mathbf{w})=-\varphi(\mathbf{w}, \mathbf{v})$,
$\varphi(\mathbf{x}, \mathbf{y})=f(\varphi(\mathbf{y}, \mathbf{x})) \Longleftrightarrow \varphi(\mathbf{x}, \mathbf{x}) \in \mathbb{R}$ and
$\varphi(\mathbf{x}, \mathbf{x}) \varphi(\mathbf{y}, \mathbf{y}) \geq \varphi(\mathbf{x}, \mathbf{y}) \varphi(\mathbf{y}, \mathbf{x})$ if $\varphi(\mathbf{x}, \mathbf{x}) \geq 0$


## Sesquilinear forms

## Lemma

$\varphi(\mathbf{x}, \mathbf{x}):=\|\mathbf{x}\|^{2}$ for $\varphi=$ Hermitian and $|f(\alpha)|=|\alpha|$

## Sesquilinear forms

## Lemma

$\varphi(\mathbf{x}, \mathbf{x}):=\|\mathbf{x}\|^{2}$ for $\varphi=$ Hermitian and $|f(\alpha)|=|\alpha|$

## Proof.

$\|\alpha \mathbf{x}\|^{2}=|\alpha|^{2}\|\mathbf{x}\|^{2}$ and $\|\mathbf{x}+\mathbf{y}\|^{2}$
$\leq|\varphi(\mathbf{x}, \mathbf{x})|+|\varphi(\mathbf{x}, \mathbf{y})|+|\varphi(\mathbf{y}, \mathbf{x})|+|\varphi(\mathbf{y}, \mathbf{y})| \leq(\|\mathbf{x}\|+\|\mathbf{y}\|)^{2}$
$\leq \max (|\varphi(\mathbf{x}, \mathbf{x})|,|\varphi(\mathbf{x}, \mathbf{y})|,|\varphi(\mathbf{y}, \mathbf{x})|,|\varphi(\mathbf{y}, \mathbf{y})|)$. Now, if $\varphi(\mathbf{x}, \mathbf{y})=a+b$ for $a, b \in \mathbb{K}$ for $f(a)=a$ and $f(b) \neq b$, then $|a|,|b| \leq\|\mathbf{x}\|\|\mathbf{y}\|[1] \Longrightarrow \max \{|a|,|b|\} \leq\|\mathbf{x}\|\|\mathbf{y}\|$ so that $\max (|\varphi(\mathbf{x}, \mathbf{x})|,|\varphi(\mathbf{y}, \mathbf{x})|,|\varphi(\mathbf{y}, \mathbf{y})|)=\max \{\|\mathbf{x}\|,\|\mathbf{y}\|\}$ If $\mathbf{x} \neq 0$ implies $\varphi(\mathbf{x}, \mathbf{x})>0$, then N1

## Sesquilinear forms

## Lemma

$\varphi(\mathbf{x}, \mathbf{x}):=\|\mathbf{x}\|^{2}$ for $\varphi=$ Hermitian and $|f(\alpha)|=|\alpha|$

## Proof.

$\|\alpha \mathbf{x}\|^{2}=|\alpha|^{2}\|\mathbf{x}\|^{2}$ and $\|\mathbf{x}+\mathbf{y}\|^{2}$
$\leq|\varphi(\mathbf{x}, \mathbf{x})|+|\varphi(\mathbf{x}, \mathbf{y})|+|\varphi(\mathbf{y}, \mathbf{x})|+|\varphi(\mathbf{y}, \mathbf{y})| \leq(\|\mathbf{x}\|+\|\mathbf{y}\|)^{2}$
$\leq \max (|\varphi(\mathbf{x}, \mathbf{x})|,|\varphi(\mathbf{x}, \mathbf{y})|,|\varphi(\mathbf{y}, \mathbf{x})|,|\varphi(\mathbf{y}, \mathbf{y})|)$. Now, if
$\varphi(\mathbf{x}, \mathbf{y})=a+b$ for $a, b \in \mathbb{K}$ for $f(a)=a$ and $f(b) \neq b$, then
$|a|,|b| \leq\|\mathbf{x}\|\|\mathbf{y}\|[1] \Longrightarrow \max \{|a|,|b|\} \leq\|\mathbf{x}\|\|\mathbf{y}\|$ so that $\max (|\varphi(\mathbf{x}, \mathbf{x})|,|\varphi(\mathbf{y}, \mathbf{x})|,|\varphi(\mathbf{y}, \mathbf{y})|)=\max \{\|\mathbf{x}\|,\|\mathbf{y}\|\}$ If $\mathbf{x} \neq 0$ implies $\varphi(\mathbf{x}, \mathbf{x})>0$, then N1

- $|\varphi(\mathbf{x}, \mathbf{y})| \leq m\|\mathbf{x}\|\|\mathbf{y}\| \Longrightarrow \varphi\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right) \longrightarrow \varphi(\mathbf{x}, \mathbf{y})$


## Closed subspaces and associated algebra[2]

- $A \longmapsto A^{\perp \perp} \Longrightarrow A \subseteq A^{\perp \perp}, A \subseteq B \Longrightarrow A^{\perp \perp} \subseteq B^{\perp \perp}$ and $A^{\perp \perp \perp \perp}=A^{\perp \perp}$


## Closed subspaces and associated algebra[2]

- $A \longmapsto A^{\perp \perp} \Longrightarrow A \subseteq A^{\perp \perp}, A \subseteq B \Longrightarrow A^{\perp \perp} \subseteq B^{\perp \perp}$ and $A^{\perp \perp \perp \perp}=A^{\perp \perp}$


## Theorem

$A^{\perp \perp}$ is the smallest subspace containing $A$

## Closed subspaces and associated algebra[2]

- $A \longmapsto A^{\perp \perp} \Longrightarrow A \subseteq A^{\perp \perp}, A \subseteq B \Longrightarrow A^{\perp \perp} \subseteq B^{\perp \perp}$ and $A^{\perp \perp \perp \perp}=A^{\perp \perp}$


## Theorem

$A^{\perp \perp}$ is the smallest subspace containing $A$

## Proof.

Assume there exists a closed $B$ such that $A \subset B \subseteq A^{\perp \perp}$. Then, $B=B^{\perp \perp}$ and $A \subset B^{\perp \perp} \subseteq A^{\perp \perp}$ so that $B^{\perp} \subset A^{\perp}$ and $A^{\perp \perp \perp}=A^{\perp} \subseteq B^{\perp}$ and hence $B^{\perp \perp}=A^{\perp \perp}$.

## Closed subspaces and associated algebra[2]

- $A \longmapsto A^{\perp \perp} \Longrightarrow A \subseteq A^{\perp \perp}, A \subseteq B \Longrightarrow A^{\perp \perp} \subseteq B^{\perp \perp}$ and $A^{\perp \perp \perp \perp}=A^{\perp \perp}$


## Theorem

$A^{\perp \perp}$ is the smallest subspace containing $A$

## Proof.

Assume there exists a closed $B$ such that $A \subset B \subseteq A^{\perp \perp}$. Then, $B=B^{\perp \perp}$ and $A \subset B^{\perp \perp} \subseteq A^{\perp \perp}$ so that $B^{\perp} \subset A^{\perp}$ and $A^{\perp \perp \perp}=A^{\perp} \subseteq B^{\perp}$ and hence $B^{\perp \perp}=A^{\perp \perp}$.

## Theorem

A closed relation $\left(T=T^{\perp \perp}\right) T$ is linear

## Closed subspaces and associated algebra[2]

Proof.
$T$ is a subspace of $X \oplus X$. Plus $T(\alpha \mathbf{x})=f(\alpha) T(\mathbf{x})$ if $\alpha(\mathbf{x}, \mathbf{y}):=(\alpha \mathbf{x}, f(\alpha) \mathbf{y})$

## Closed subspaces and associated algebra[2]

Proof.$T$ is a subspace of $X \oplus X$. Plus $T(\alpha \mathbf{x})=f(\alpha) T(\mathbf{x})$ if $\alpha(\mathbf{x}, \mathbf{y}):=(\alpha \mathbf{x}, f(\alpha) \mathbf{y})$

## Theorem

If $T$ is closed, then $\operatorname{ker}(T)$ is closed

## Closed subspaces and associated algebra[2]

## Proof.

$T$ is a subspace of $X \oplus X$. Plus $T(\alpha \mathbf{x})=f(\alpha) T(\mathbf{x})$ if $\alpha(\mathbf{x}, \mathbf{y}):=(\alpha \mathbf{x}, f(\alpha) \mathbf{y})$

## Theorem

If $T$ is closed, then $\operatorname{ker}(T)$ is closed

- $T+S=\{(\mathbf{x}, \mathbf{y}): \mathbf{y}=\mathbf{s}+\mathbf{t}$ for $\mathbf{s} \in \mathcal{R}(S), \mathbf{t} \in \mathcal{R}(T)\}$


## Closed subspaces and associated algebra[2]

## Proof.

$T$ is a subspace of $X \oplus X$. Plus $T(\alpha \mathbf{x})=f(\alpha) T(\mathbf{x})$ if $\alpha(\mathbf{x}, \mathbf{y}):=(\alpha \mathbf{x}, f(\alpha) \mathbf{y})$

## Theorem

If $T$ is closed, then $\operatorname{ker}(T)$ is closed

- $T+S=\{(\mathbf{x}, \mathbf{y}): \mathbf{y}=\mathbf{s}+\mathbf{t}$ for $\mathbf{s} \in \mathcal{R}(S), \mathbf{t} \in \mathcal{R}(T)\}$
- $T \circ S=T S=\{(\mathbf{x}, \mathbf{z}):(\mathbf{x}, \mathbf{y}) \in S$ and $(\mathbf{y}, \mathbf{z}) \in T$ for some $\mathbf{y}\}$


## Closed subspaces and associated algebra[2]

## Proof.

$T$ is a subspace of $X \oplus X$. Plus $T(\alpha \mathbf{x})=f(\alpha) T(\mathbf{x})$ if $\alpha(\mathbf{x}, \mathbf{y}):=(\alpha \mathbf{x}, f(\alpha) \mathbf{y})$

## Theorem

If $T$ is closed, then $\operatorname{ker}(T)$ is closed

- $T+S=\{(\mathbf{x}, \mathbf{y}): \mathbf{y}=\mathbf{s}+\mathbf{t}$ for $\mathbf{s} \in \mathcal{R}(S), \mathbf{t} \in \mathcal{R}(T)\}$
- $T \circ S=T S=\{(\mathbf{x}, \mathbf{z}):(\mathbf{x}, \mathbf{y}) \in S$ and $(\mathbf{y}, \mathbf{z}) \in T$ for some $\mathbf{y}\}$
- $O=\{(\mathbf{x}, 0)\}, I=\{(\mathbf{x}, \mathbf{x})\}$ and $\lambda T=\{(\mathbf{x}, \lambda \mathbf{y}):(\mathbf{x}, \mathbf{y}) \in T\}$


## Closed subspaces and associated algebra[2]

## Proof.

$T$ is a subspace of $X \oplus X$. Plus $T(\alpha \mathbf{x})=f(\alpha) T(\mathbf{x})$ if $\alpha(\mathbf{x}, \mathbf{y}):=(\alpha \mathbf{x}, f(\alpha) \mathbf{y})$

## Theorem

If $T$ is closed, then $\operatorname{ker}(T)$ is closed

- $T+S=\{(\mathbf{x}, \mathbf{y}): \mathbf{y}=\mathbf{s}+\mathbf{t}$ for $\mathbf{s} \in \mathcal{R}(S), \mathbf{t} \in \mathcal{R}(T)\}$
- $T \circ S=T S=\{(\mathbf{x}, \mathbf{z}):(\mathbf{x}, \mathbf{y}) \in S$ and $(\mathbf{y}, \mathbf{z}) \in T$ for some $\mathbf{y}\}$
- $O=\{(\mathbf{x}, 0)\}, I=\{(\mathbf{x}, \mathbf{x})\}$ and $\lambda T=\{(\mathbf{x}, \lambda \mathbf{y}):(\mathbf{x}, \mathbf{y}) \in T\}$
- $R S+R T \subseteq R(S+T)$. Converse holds if $\mathcal{D}(R)=X$


## Closed subspaces and associated algebra[2]

## Proof.

$T$ is a subspace of $X \oplus X$. Plus $T(\alpha \mathbf{x})=f(\alpha) T(\mathbf{x})$ if $\alpha(\mathbf{x}, \mathbf{y}):=(\alpha \mathbf{x}, f(\alpha) \mathbf{y})$

## Theorem

If $T$ is closed, then $\operatorname{ker}(T)$ is closed

- $T+S=\{(\mathbf{x}, \mathbf{y}): \mathbf{y}=\mathbf{s}+\mathbf{t}$ for $\mathbf{s} \in \mathcal{R}(S), \mathbf{t} \in \mathcal{R}(T)\}$
- $T \circ S=T S=\{(\mathbf{x}, \mathbf{z}):(\mathbf{x}, \mathbf{y}) \in S$ and $(\mathbf{y}, \mathbf{z}) \in T$ for some $\mathbf{y}\}$
- $O=\{(\mathbf{x}, 0)\}, I=\{(\mathbf{x}, \mathbf{x})\}$ and $\lambda T=\{(\mathbf{x}, \lambda \mathbf{y}):(\mathbf{x}, \mathbf{y}) \in T\}$
- $R S+R T \subseteq R(S+T)$. Converse holds if $\mathcal{D}(R)=X$
- $(S+T) R \subseteq S R+T R$. Converse holds if $R$ is single-valued.


## Closed subspaces and associated algebra[2]

## Proof.

$T$ is a subspace of $X \oplus X$. Plus $T(\alpha \mathbf{x})=f(\alpha) T(\mathbf{x})$ if $\alpha(\mathbf{x}, \mathbf{y}):=(\alpha \mathbf{x}, f(\alpha) \mathbf{y})$

## Theorem

If $T$ is closed, then $\operatorname{ker}(T)$ is closed

- $T+S=\{(\mathbf{x}, \mathbf{y}): \mathbf{y}=\mathbf{s}+\mathbf{t}$ for $\mathbf{s} \in \mathcal{R}(S), \mathbf{t} \in \mathcal{R}(T)\}$
- $T \circ S=T S=\{(\mathbf{x}, \mathbf{z}):(\mathbf{x}, \mathbf{y}) \in S$ and $(\mathbf{y}, \mathbf{z}) \in T$ for some $\mathbf{y}\}$
- $O=\{(\mathbf{x}, 0)\}, I=\{(\mathbf{x}, \mathbf{x})\}$ and $\lambda T=\{(\mathbf{x}, \lambda \mathbf{y}):(\mathbf{x}, \mathbf{y}) \in T\}$
- $R S+R T \subseteq R(S+T)$. Converse holds if $\mathcal{D}(R)=X$
- $(S+T) R \subseteq S R+T R$. Converse holds if $R$ is single-valued.
- ker $T=\operatorname{ker} S$ and $\mathcal{R}(S)=\mathcal{R}(T)$, then $S \subset T$ implies $S=T$.


## Closed subspaces and associated algebra[2]

## Theorem <br> A single-valued, linear adjoint of $T$ will always exist

## Closed subspaces and associated algebra[2]

## Theorem

A single-valued, linear adjoint of $T$ will always exist

## Proof.

$U: X \times X \longrightarrow X \times X$ by $U(\mathbf{x}, \mathbf{y}):=(-\mathbf{y}, \mathbf{x})$. Well-defined+bijective.
$\Phi(\mathbf{z}, \mathbf{w}):=(\varphi \oplus \varphi)(\mathbf{z}, \mathbf{w})_{X \times X}=\varphi\left(\mathbf{z}_{1}, \mathbf{w}_{1}\right)+\varphi\left(\mathbf{z}_{2}, \mathbf{w}_{2}\right)$
$\Longrightarrow \Phi(U(\mathbf{z}), \mathbf{w})=\Phi\left(\mathbf{z}, U^{-1}(\mathbf{w})\right)$
For $M \subseteq X \times X, T^{*}=U\left(M^{\perp}\right)=U(M)^{\perp}$
$\varphi(T \mathbf{x}, \mathbf{y})=\varphi\left(\mathbf{x}, T^{*} \mathbf{w}\right)$ for $(\mathbf{x}, \mathbf{z}) \in T$ and $(\mathbf{y}, \mathbf{w}) \in T^{*}$

## Closed subspaces and associated algebra[2]

## Theorem

A single-valued, linear adjoint of $T$ will always exist

## Proof.

$U: X \times X \longrightarrow X \times X$ by $U(\mathbf{x}, \mathbf{y}):=(-\mathbf{y}, \mathbf{x})$. Well-defined + bijective.
$\Phi(\mathbf{z}, \mathbf{w}):=(\varphi \oplus \varphi)(\mathbf{z}, \mathbf{w})_{X \times X}=\varphi\left(\mathbf{z}_{1}, \mathbf{w}_{1}\right)+\varphi\left(\mathbf{z}_{2}, \mathbf{w}_{2}\right)$
$\Longrightarrow \Phi(U(\mathbf{z}), \mathbf{w})=\Phi\left(\mathbf{z}, U^{-1}(\mathbf{w})\right)$
For $M \subseteq X \times X, T^{*}=U\left(M^{\perp}\right)=U(M)^{\perp}$
$\varphi(T \mathbf{x}, \mathbf{y})=\varphi\left(\mathbf{x}, T^{*} \mathbf{w}\right)$ for $(\mathbf{x}, \mathbf{z}) \in T$ and $(\mathbf{y}, \mathbf{w}) \in T^{*}$

Outcomes $\operatorname{ker} T^{*}=\mathcal{R}(T)^{\perp},(\lambda T)^{*}=f(\lambda) T^{*},\left(T^{-1}\right)^{*}=\left(T^{*}\right)^{-1}$,

$$
T^{*}=\left(-T^{-1}\right)^{\perp}, T^{*}=\left(-T^{-1}\right)^{\perp}
$$

## Closed subspaces and associated algebra[2]

## Theorem

A single-valued, linear adjoint of $T$ will always exist

## Proof.

$U: X \times X \longrightarrow X \times X$ by $U(\mathbf{x}, \mathbf{y}):=(-\mathbf{y}, \mathbf{x})$. Well-defined+bijective.
$\Phi(\mathbf{z}, \mathbf{w}):=(\varphi \oplus \varphi)(\mathbf{z}, \mathbf{w})_{X \times X}=\varphi\left(\mathbf{z}_{1}, \mathbf{w}_{1}\right)+\varphi\left(\mathbf{z}_{2}, \mathbf{w}_{2}\right)$
$\Longrightarrow \Phi(U(\mathbf{z}), \mathbf{w})=\Phi\left(\mathbf{z}, U^{-1}(\mathbf{w})\right)$
For $M \subseteq X \times X, T^{*}=U\left(M^{\perp}\right)=U(M)^{\perp}$
$\varphi(T \mathbf{x}, \mathbf{y})=\varphi\left(\mathbf{x}, T^{*} \mathbf{w}\right)$ for $(\mathbf{x}, \mathbf{z}) \in T$ and $(\mathbf{y}, \mathbf{w}) \in T^{*}$

Outcomes $\operatorname{ker} T^{*}=\mathcal{R}(T)^{\perp},(\lambda T)^{*}=f(\lambda) T^{*},\left(T^{-1}\right)^{*}=\left(T^{*}\right)^{-1}$,

$$
T^{*}=\left(-T^{-1}\right)^{\perp}, T^{*}=\left(-T^{-1}\right)^{\perp}
$$

Outcomes $\mathcal{D}(T)^{\perp \perp}=E \Longleftrightarrow T^{*}$ is single-valued

## Closed subspaces and associated algebra[2]

- Canonical $*$ operation?


## Closed subspaces and associated algebra[2]

- Canonical $*$ operation?
- We need $*(\mathbf{a}+\mathbf{b})=*(\mathbf{a})+*(\mathbf{b}), *(\alpha \mathbf{a})=f(\alpha) *(\mathbf{a})$, $*(*(\mathbf{a}))=\mathbf{a}, *(\mathbf{a b})=*(\mathbf{b}) *(\mathbf{a})$.


## Closed subspaces and associated algebra[2]

- Canonical $*$ operation?
- We need $*(\mathbf{a}+\mathbf{b})=*(\mathbf{a})+*(\mathbf{b}), *(\alpha \mathbf{a})=f(\alpha) *(\mathbf{a})$, $*(*(\mathbf{a}))=\mathbf{a}, *(\mathbf{a b})=*(\mathbf{b}) *(\mathbf{a})$.
- Possible if $*(\mathbf{x})=*\left(\sum \alpha_{i j} \mathbf{v}_{i} \mathbf{v}_{j}\right)=\sum f\left(\alpha_{i j}\right) \mathbf{v}_{i} \mathbf{v}_{j}$ provided $|f(\alpha)|=|\alpha|$


## Closed subspaces and associated algebra[2]

- Canonical $*$ operation?
- We need $*(\mathbf{a}+\mathbf{b})=*(\mathbf{a})+*(\mathbf{b}), *(\alpha \mathbf{a})=f(\alpha) *(\mathbf{a})$, $*(*(\mathbf{a}))=\mathbf{a}, *(\mathbf{a b})=*(\mathbf{b}) *(\mathbf{a})$.
- Possible if $*(\mathbf{x})=*\left(\sum \alpha_{i j} \mathbf{v}_{i} \mathbf{v}_{j}\right)=\sum f\left(\alpha_{i j}\right) \mathbf{v}_{i} \mathbf{v}_{j}$ provided $|f(\alpha)|=|\alpha|$
$\bullet \Longrightarrow\|*\|=1 \Longrightarrow\left\|\mathbf{a}^{*} \mathbf{a}\right\| \leq\|\mathbf{a}\|^{2}$


## Closed subspaces and associated algebra[2]

- Canonical $*$ operation?
- We need $*(\mathbf{a}+\mathbf{b})=*(\mathbf{a})+*(\mathbf{b}), *(\alpha \mathbf{a})=f(\alpha) *(\mathbf{a})$, $*(*(\mathbf{a}))=\mathbf{a}, *(\mathbf{a b})=*(\mathbf{b}) *(\mathbf{a})$.
- Possible if $*(\mathbf{x})=*\left(\sum \alpha_{i j} \mathbf{v}_{i} \mathbf{v}_{j}\right)=\sum f\left(\alpha_{i j}\right) \mathbf{v}_{i} \mathbf{v}_{j}$ provided $|f(\alpha)|=|\alpha|$
- $\Longrightarrow\|*\|=1 \Longrightarrow\left\|\mathbf{a}^{*} \mathbf{a}\right\| \leq\|\mathbf{a}\|^{2}$
- Question: what seminorm on $B_{\phi}(X)$ ?


## Closed subspaces and associated algebra[2]

- Canonical $*$ operation?
- We need $*(\mathbf{a}+\mathbf{b})=*(\mathbf{a})+*(\mathbf{b}), *(\alpha \mathbf{a})=f(\alpha) *(\mathbf{a})$, $*(*(\mathbf{a}))=\mathbf{a}, *(\mathbf{a b})=*(\mathbf{b}) *(\mathbf{a})$.
- Possible if $*(\mathbf{x})=*\left(\sum \alpha_{i j} \mathbf{v}_{i} \mathbf{v}_{j}\right)=\sum f\left(\alpha_{i j}\right) \mathbf{v}_{i} \mathbf{v}_{j}$ provided $|f(\alpha)|=|\alpha|$
- $\Longrightarrow\|*\|=1 \Longrightarrow\left\|\mathbf{a}^{*} \mathbf{a}\right\| \leq\|\mathbf{a}\|^{2}$
- Question: what seminorm on $B_{\phi}(X)$ ?
- $\|T\|=\limsup _{\|\mathbf{x}\| \rightarrow \infty} \frac{\|T \mathbf{x}\|}{\|\mathbf{x}\|} \Longrightarrow\|R T\| \geq\|R\|\|T\|[5]$


## Closed subspaces and associated algebra[2]

- Canonical $*$ operation?
- We need $*(\mathbf{a}+\mathbf{b})=*(\mathbf{a})+*(\mathbf{b}), *(\alpha \mathbf{a})=f(\alpha) *(\mathbf{a})$, $*(*(\mathbf{a}))=\mathbf{a}, *(\mathbf{a b})=*(\mathbf{b}) *(\mathbf{a})$.
- Possible if $*(\mathbf{x})=*\left(\sum \alpha_{i j} \mathbf{v}_{i} \mathbf{v}_{j}\right)=\sum f\left(\alpha_{i j}\right) \mathbf{v}_{i} \mathbf{v}_{j}$ provided $|f(\alpha)|=|\alpha|$
- $\Longrightarrow\|*\|=1 \Longrightarrow\left\|\mathbf{a}^{*} \mathbf{a}\right\| \leq\|\mathbf{a}\|^{2}$
- Question: what seminorm on $B_{\phi}(X)$ ?
- $\|T\|=\lim _{\|\mathbf{x}\| \rightarrow \infty} \frac{\|T \mathrm{x}\|}{\|\mathbf{x}\|} \Longrightarrow\|R T\| \geq\|R\|\|T\|[5]$
- $\|T\|=\sup _{\|\mathbf{x}\| \neq 0} \frac{\|T \mathbf{x}\|}{\|\mathbf{x}\|} \Longrightarrow\|R T\| \leq\|R\|\|T\|$ (care for $\|\alpha T\|=|\phi(\alpha)|\|T\|)$


## Properties of operator algebra

Theorem
A unital Weak Banach algebra $(X,\|\|$.$) is a complete subalgebra of B_{\phi}(X)$

## Properties of operator algebra

## Theorem

A unital Weak Banach algebra $(X,\|\|$.$) is a complete subalgebra of B_{\phi}(X)$

## Proof.

$L_{\mathbf{x}}(\mathbf{y}):=\mathbf{x y}$. Then, $L_{\mathbf{x}} \in B_{\phi}(X)$. Then, $L: X \longrightarrow B_{\phi}(X)$ as $L(\mathbf{x})=L_{\mathbf{x}}$ is a homomorphism and $\|\mathbf{x}\|_{0}:=\left\|L_{\mathrm{x}}\right\|$ is equivalent to $\|\cdot\|$

## Properties of operator algebra

## Theorem

A unital Weak Banach algebra $(X,\|\|$.$) is a complete subalgebra of B_{\phi}(X)$

## Proof.

$L_{\mathrm{x}}(\mathbf{y}):=\mathbf{x y}$. Then, $L_{\mathrm{x}} \in B_{\phi}(X)$. Then, $L: X \longrightarrow B_{\phi}(X)$ as $L(\mathbf{x})=L_{\mathrm{x}}$ is a homomorphism and $\|\mathbf{x}\|_{o}:=\left\|L_{\mathrm{x}}\right\|$ is equivalent to $\|$.

## Theorem

There are no multiplicative linear functionals on $B_{\phi}(X)$

## Properties of operator algebra

## Theorem

A unital Weak Banach algebra $(X,\|\|$.$) is a complete subalgebra of B_{\phi}(X)$

## Proof.

$L_{\mathbf{x}}(\mathbf{y}):=\mathbf{x y}$. Then, $L_{\mathbf{x}} \in B_{\phi}(X)$. Then, $L: X \longrightarrow B_{\phi}(X)$ as $L(\mathbf{x})=L_{\mathbf{x}}$ is a homomorphism and $\|\mathbf{x}\|_{0}:=\left\|L_{\mathrm{x}}\right\|$ is equivalent to $\|\cdot\|$

## Theorem

There are no multiplicative linear functionals on $B_{\phi}(X)$

- Proof: $\forall \lambda \in \mathbb{K}, \lambda I \in B_{\phi}(X) \Longrightarrow g(I)=e$. Consider orthogonal projection operators $P$ and $Q \in B_{\phi}(X)$ s.t. $\operatorname{dim} P(X)=\operatorname{dim} Q(X)$. Then, $T: P(X) \longrightarrow Q(X)$, a partial isometry such that $P=T^{*} T$, $Q=T T^{*}$ so that $P Q=0 \Longrightarrow g(Q)=g(P)=0$. Further, $P+Q=I \Longrightarrow e=g(I)=g(P)+g(Q)=0$


## Riesz Representation Theorem on Hermitian Spaces[2]

## Theorem

$\exists$ cts linear functional $g:(X, \varphi, \mathbb{K}) \longrightarrow X^{*}$ such that $\mathcal{R}(g)=X^{\prime}$.

## Riesz Representation Theorem on Hermitian Spaces[2]

## Theorem

$\exists$ cts linear functional $g:(X, \varphi, \mathbb{K}) \longrightarrow X^{*}$ such that $\mathcal{R}(g)=X^{\prime}$.

- $g$ is cts:=ker $g=\operatorname{ker} g^{\perp \perp}$


## Riesz Representation Theorem on Hermitian Spaces[2]

## Theorem

$\exists$ cts linear functional $g:(X, \varphi, \mathbb{K}) \longrightarrow X^{*}$ such that $\mathcal{R}(g)=X^{\prime}$.

- $g$ is cts: $=\operatorname{ker} g=\operatorname{ker} g^{\perp \perp}$


## Proof.

$g_{y}: X \longrightarrow X^{*}$ s.t. $g_{\mathbf{y}}(\mathbf{x})=\varphi(\mathbf{y}, \mathbf{x})$
(injective+well-define) $\Longrightarrow \mathcal{R}(g) \subseteq X^{\prime}$. $g_{y}$ cts since
$\operatorname{ker} g_{\mathbf{y}}=\{k \mathbf{y}: k \in \mathbb{K}\}^{\perp}$
Conversely, for $h \in X^{\prime}, h=0 \Longrightarrow g_{0}=h \Longrightarrow h \in \mathcal{R}(g)$.
$h \neq 0 \Longrightarrow \operatorname{dim} h=1$
$\Longrightarrow X=\operatorname{ker} h \oplus\{k \mathbf{v}: k \in \mathbb{K}\}$. Letting $w=f^{-1}\left(\varphi(\mathbf{v}, \mathbf{z})^{-1} h(\mathbf{v})\right) \mathbf{z}$
for $\mathbf{z} \in \operatorname{ker} h^{\perp}$ and $\mathbf{z} \notin\{k \mathbf{v}: k \in \mathbb{K}\}^{\perp}$ gives us $h(\mathbf{v})=\varphi(\mathbf{v}, \mathbf{w})$.
$X \ni \mathbf{x}=\mathbf{x}_{1}+\alpha v \Longrightarrow h(\mathbf{x})=\alpha h(\mathbf{v}) \Longrightarrow \varphi(\mathbf{x}, \mathbf{w})=\alpha \varphi(\mathbf{v}, \mathbf{w}) \Longrightarrow$
$h=g_{w}$

## Riesz Representation Theorem on Hermitian Spaces[2]

Corollary
Kernel of each element of $g(A)$ is splitting.

## Riesz Representation Theorem on Hermitian Spaces[2]

## Corollary

Kernel of each element of $g(A)$ is splitting.

- $F \subseteq X$ splitting if $X=F \oplus F^{\perp}, A=$ collection of anisotropic vectors


## Riesz Representation Theorem on Hermitian Spaces[2]

## Corollary

Kernel of each element of $g(A)$ is splitting.

- $F \subseteq X$ splitting if $X=F \oplus F^{\perp}, A=$ collection of anisotropic vectors


## Proof.

If $\mathbf{y}$ is anisotropic, then $y \notin\{k \mathbf{y}: k \in \mathbb{K}\}^{\perp}$ so $\operatorname{ker} g_{\mathbf{y}}=\{k \mathbf{y}: k \in \mathbb{K}\}^{\perp} \Longrightarrow X=\operatorname{ker} g_{\mathbf{y}} \oplus \operatorname{ker} g_{\mathbf{y}}^{\perp}$

## Riesz Representation Theorem on Hermitian Spaces[2]

## Corollary

Kernel of each element of $g(A)$ is splitting.

- $F \subseteq X$ splitting if $X=F \oplus F^{\perp}, A=$ collection of anisotropic vectors


## Proof.

If $\mathbf{y}$ is anisotropic, then $y \notin\{k \mathbf{y}: k \in \mathbb{K}\}^{\perp}$ so $\operatorname{ker} g_{\mathbf{y}}=\{k \mathbf{y}: k \in \mathbb{K}\}^{\perp} \Longrightarrow X=\operatorname{ker} g_{\mathbf{y}} \oplus \operatorname{ker} g_{\mathbf{y}}^{\perp}$

## Corollary

$\varphi$ admits nonzero isotropic vectors, then there are closed subspaces of $X$ that are not splitting.

## Riesz Representation Theorem on Hermitian Spaces[2]

## Corollary

Kernel of each element of $g(A)$ is splitting.

- $F \subseteq X$ splitting if $X=F \oplus F^{\perp}, A=$ collection of anisotropic vectors


## Proof.

If $\mathbf{y}$ is anisotropic, then $y \notin\{k \mathbf{y}: k \in \mathbb{K}\}^{\perp}$ so $\operatorname{ker} g_{\mathbf{y}}=\{k \mathbf{y}: k \in \mathbb{K}\}^{\perp} \Longrightarrow X=\operatorname{ker} g_{\mathbf{y}} \oplus \operatorname{ker} g_{\mathbf{y}}^{\perp}$

## Corollary

$\varphi$ admits nonzero isotropic vectors, then there are closed subspaces of $X$ that are not splitting.

## Proof.

If $0 \neq \mathbf{y} \in X$ such that $\varphi(\mathbf{y}, \mathbf{y})=0$, then
$\{k \mathbf{y}: k \in \mathbb{K}\} \oplus\{k \mathbf{y}: k \in \mathbb{K}\}^{\perp} \subset X$

## Orthomodularity

## Definition

A space $X$ is orthomodular if for all closed $F \subseteq X, X=F \oplus F^{\perp}$

## Orthomodularity

## Definition

A space $X$ is orthomodular if for all closed $F \subseteq X, X=F \oplus F^{\perp}$

## Definition

A lattice L is orthomodular if $x \leq z$ implies $x \vee\left(x^{\prime} \wedge z\right)=z$ for all $x, z \in \mathrm{~L}$

## Orthomodularity

## Definition

A space $X$ is orthomodular if for all closed $F \subseteq X, X=F \oplus F^{\perp}$

## Definition

A lattice L is orthomodular if $x \leq z$ implies $x \vee\left(x^{\prime} \wedge z\right)=z$ for all $x, z \in \mathrm{~L}$

## Theorem

$X$ is orthomodular $\Longleftrightarrow L=C(X)$ is orthomodular

## Orthomodularity

## Definition

A space $X$ is orthomodular if for all closed $F \subseteq X, X=F \oplus F^{\perp}$

## Definition

A lattice L is orthomodular if $x \leq z$ implies $x \vee\left(x^{\prime} \wedge z\right)=z$ for all $x, z \in \mathrm{~L}$

## Theorem

$X$ is orthomodular $\Longleftrightarrow L=C(X)$ is orthomodular

- If a Hermitian space is orthomodular, then $\langle F\rangle=F^{\perp \perp}$ and such sets form atomic ortholattice which is isomorphic to the lattice of closed subspaces of a Hilbert space over an arbitrary Archimedean skew field[6].


## Solr's theorem

## Theorem

Let $(X, \mathbb{K}, \varphi)$ be an infinite dimensional orthomodular space over a skew field $\mathbb{K}$ which contains an orthonormal system $\left(e_{i}\right)_{i \in \mathbb{N}}$. Then $\mathbb{K}$ is either $\mathbb{R}, \mathbb{C}$ or $\mathbb{H}$ and $(X, \mathbb{K}, \varphi)$ is a Hilbert space [4]

## Solr's theorem

## Theorem

Let $(X, \mathbb{K}, \varphi)$ be an infinite dimensional orthomodular space over a skew field $\mathbb{K}$ which contains an orthonormal system $\left(e_{i}\right)_{i \in \mathbb{N}}$. Then $\mathbb{K}$ is either $\mathbb{R}, \mathbb{C}$ or $\mathbb{H}$ and $(X, \mathbb{K}, \varphi)$ is a Hilbert space [4]

## Proof.

$n \mathbf{x}=\left\langle\sum_{i=0}^{n} e_{i}\right\rangle \mathbf{x}=0 \Longleftrightarrow\left\langle\sum_{i=0}^{n} e_{i}\right\rangle=0 \Longleftrightarrow n=0$
$\Longrightarrow \mathbb{Q} \subset \mathbb{K}$
$\forall\left(\alpha_{i}\right)_{i \in \mathbb{N}^{*}} \in \mathbb{Q}^{\mathbb{N}^{*}}$ with $\alpha:=\sum_{i=0}^{\infty} \alpha_{i}^{2} \in \mathbb{Q}$, then $\exists x=\sum_{i \in \mathbb{N}^{*}} \alpha_{i} e_{i} \in X$,
with $\langle x\rangle=\alpha$
Define $\sum_{i=0}^{\infty} \alpha_{i}^{2} \longmapsto\left\langle\sum_{i \in \mathbb{N}} \alpha_{i} e_{i}\right\rangle$
This is multiplicative linear function so that $\mathbb{R} \subset \mathbb{K}$
$\Longrightarrow\left(\alpha_{i}\right)_{i \in \mathbb{N}} \in I_{2}(\mathbb{R})$ with $\alpha:=\sum_{i=0}^{\infty} \alpha_{i}^{2}, \exists \mathbf{x}=\sum_{i \in \mathbb{N}} \alpha_{i} e_{i} \in X$ such that
$\langle a\rangle=\alpha$

## Solr's theorem

## Proof.

(cotd.)
Next, $\mathbb{R} \subset Z=\{x \mid x y=y x, \forall y \in \mathbb{K}\} \Longrightarrow \mathbb{R}=S(\mathbb{K})$ using
$S \subseteq P:=\left\{\langle x\rangle \mid 0 \neq x=\sum_{i \in \mathbb{N}} \xi_{i} e_{i}, \xi_{i} \in \mathbb{R}(\gamma) \forall i \in \mathbb{N}\right.$ and $\left.\langle x\rangle \in \mathbb{R}(\gamma)\right\}$
where $\gamma \in S$
$\lambda \in \mathbb{K} \backslash \mathbb{R} \Longrightarrow \mathbb{R}(\lambda) \cong \mathbb{C}$
$\lambda \in \mathbb{K} \backslash \mathbb{C} \Longrightarrow \mathbb{C}+\mathbb{C} \lambda \cong \mathbb{H} \Longrightarrow$
$\lambda \in \mathbb{K} \backslash \mathbb{H} \Longrightarrow \mathbb{H}+\mathbb{H} \lambda \cong \mathbb{H}$, contradiction
Hence $X \cong I_{2}(\mathbb{K})$ and $\mathbb{K}=\mathbb{R}, \mathrm{C}$ or $\mathbb{H}$

## Conclusion

- Orthomodularity is important


## Conclusion

- Orthomodularity is important
- $\Longrightarrow$ exclusion of non-Archimedean fields


## Conclusion

- Orthomodularity is important
- $\Longrightarrow$ exclusion of non-Archimedean fields
- $\Longleftarrow$ Non-existence of isotropic vectors


## Future Work

- Over which non-Archimedean fields are Hermitian spaces orthomodular?


## Future Work

- Over which non-Archimedean fields are Hermitian spaces orthomodular?
- Does there exist a (countable?) eigenbasis decomposition of a non-linear operator on a Hermitian space over a non-Archimedean field?


## References

（ J．A．Alvarez，$C_{*} *$－algebras of operators in non－archimedean Hilbert spaces，Comment．Math．Univ．Carolin． 334 （1992）pp．573－580
（1）M．Ardnt，K．Hornberger，Testing the limits of quantum mechanical superpositions，Nature Phys． 10 （2014）pp．271－277
國 J．Baez，Divison Algebras and Quantum Theory，Found．Phys． 427 （2011）
圊 S．J．Bhatt，A Seminorm with square property on a Banach Algebra is submultiplicative，Proc．Am．Math．Soc． 1172 （1993）pp．435－438
围 M．Bojowald，S．Brahma，U．Büyükçam，Testing Nonassociative Quantum Mechanics，Phys．Rev．Lett． 11522 （2015）pp．22－27
囯 O．Brunet，Orthogonality and Dimensionality，Axioms， 2 （2013）pp． 477－489

## References (cotd.)

E H. J. Efinger, A Nonlinear Unitary Framework for Quantum State Reduction, Department of Scientific Computing Technical Report Series (2005)
R. Piziak, Sesquilinear forms in infinite dimensions, Pac. J. Math. 432 (1972) pp. 475-481

R-i M. Rédei, (Editor) John von Neumann: Selected Letters, 27: History of Mathematics, Rhode Island, Am. Math. Soc. and Lon. Math. Soc. (2005)
(1) M. P. Solèr, Characterisation Of Hilbert Spaces by Orthomodular Spaces, Comm. In Alg. 23:1 (1995) pp. 219-243
A. Widder, Spectral Theory for Nonlinear Operators, Master's Thesis, Vienna Institute of Technology

