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Weisfeiler-Lehman Algorithm

Definition

A coloring of a graph G = (V ,E ) is a function c : V −→ N.

Definition

A (perfect) hashing is any injective function.

Basic idea: start with c (v) = c(0) (v), and
c(t+1) (v) =hash

(
c(t) (v) , {{c(t) (w) : w ∈ N (v)}}

)
[WL68]
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Weisfeiler-Lehman Algorithm

Source:
https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/
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Weisfeiler-Lehman Algorithm

Algorithm 1 Weisfeiler-Lehman (WL) or Naive vertex refinement

1: Input: (V ,E ,XV ) {Bxv ∈ Zd
2}

2: c (v) = c(0) (v)←− hash (xv )
3: while c(t) (v) = c(t+1) (v) ∀v ∈ V do
4: c(t+1) (v)←−hash

(
c(t) (v) , {{c(t) (w) : w ∈ N (v)}}

)
5: end while
6: Output: c(T ) (v) ∀v ∈ V

If two graphs have different colorings, then the graphs are not isomorphic. But the
converse is not true[MBHSL19]
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Graph Neural Networks

How powerful are graph neural networks?[MBHSL19, XHLJ18]

For node classification: Given (V ,E ,XV ), find hv = x
(K)
v and f such that

f (hv ) = xv

a(k+1)
v = AGGREGATE (k+1)

({
x (k)
u : u ∈ N (v)

})
,

x (k+1)
v = COMBINE (k+1)

(
x (k)
v , a(k+1)

v

)

AGGREGATE COMBINE Ref

MAX
({
σ
(
W1.x

(k)
u

)}
, u ∈ N (v)

)
W2.

[
x

(k)
v , a

(k+1)
v

]
GraphSAGE

W1.MEAN
(
x

(k)
u , u ∈ N (v) ∪ {v}

)
σ
({

W2.a
(k+1)
v

})
GCN
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Graph Neural Networks

or..
x

(k+1)
v =COMBINE

(
x

(k)
v ,AGGREGATE(k+1)

({
x

(k)
u : u ∈ N (v)

}))

Compare with
c(t+1) (v) =hash

(
c(t) (v) , {{c(t) (w) : w ∈ N (v)}}

)
Theorem
Let G1 and G2 be any two non-isomorphic graphs. If a graph neural network
A : G −→Rd maps G1 and G2 to different embeddings, the Weisfeiler-Lehman
graph isomorphism test also decides G1 and G2 are not isomorphic. Converse
holds if COMBINE and AGGREGATE are injective[XHLJ18].
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k-Weisfeiler-Lehman Algorithm

Algorithm 1 k-Weisfeiler-Lehman (k-WL)

1: Input: (V ,E ,XV ) {Bxv ∈ Zd
2}

2: c
(−→v ) = c(0)

(−→v )←− hash (x−→v )

3: while c(t)
(−→v ) = c(t+1)

(−→v ) ∀−→v ∈ V k do

4: c
(t+1)
i

(−→v )←− {{c(t)
(−→w ) : w ∈ Ni

(−→v )}} ∀−→v ∈ V k

5: c(t+1)
(−→v )←− hash

(
c(t)

(−→v ) , c(t+1)
1

(−→v ) , ..., c(t+1)
k

(−→v )) ∀−→v ∈ V k

6: end while
7: Output: c(T )

(−→v ) ∀−→v ∈ V k

Here, hash (x−→v ) = hash (x−→w ) iff xvi = xwi and if (vi , vj) ∈ E iff (wi ,wj) ∈ E and
Ni

(−→v ) = {(v1, ..., vi−1, u, vi+1, ..., vk) : u ∈ V }

Ni

(−→v ) = {(i , v2..., vk) , (v1, i , ..., vk) , ..., (v1, ..., vk−1, i) : i ∈ V } for Folklore
k-WL
For directed graphs, use
c t+1 (v)←−hash

(
c(t) (v) , {{c(t) (w) : w ∈ Nin (v)}}, {{c(t) (w) : w ∈ Nout (v)}}

)
[MG21]
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k-Weisfeiler-Lehman Algorithm
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k-Weisfeiler-Lehman Algorithm

Algorithm 3 k-Weisfeiler-Lehman (k-WL)
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WL-kernels

Can be used to make different neural networks.

x
(t)
S = σ

x
(t−1)
S .W

(t)
1 +

∑
u∈NL(S)∪NG (S)

x (t−1)
u .W

(t)
2

 (global)

x
(t)
S = σ

x
(t−1)
S .W

(t)
1 +

∑
u∈NL(S)

x (t−1)
u .W

(t)
2

 (local)

where S = (v1, ..., vk),
NL (S) =

{
T ∈ V k : |S ∩ T | = k − 1, (v ,w) ∈ E for some unique v ,w ∈ S\T

}
N (S) =

{
T ∈ V k : |S ∩ T | = k − 1

}
, NG (S) = N (S) \NL (S)[MRF+19].
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Strength of WL Tests

2-WL ≡ WL[MBHSL19]

k-WL is strictly weaker than (k + 1)-WL[HV21] ((k + 1)-WL @ k-WL)

Therefore, the architecture of [MRF+19] performs better than simple
message passing.

(k + 1)-WL ≡ k-FWL[HV21]

For every k, there is an infinite family of graphs for which the k-WL test
fails[CFI92]

Note: DWL v WL, so GNN with directed edges are more
powerful[RCDG+23]

a
(k+1)
v =AGGREGATE(k+1)

({
x

(k)
u , x

(k)
v : (u, v) ∈ E

})
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The case for higher order relations

Simplicial WL [BFW+21] uses

c t+1 (σ)←−hash
(
c t (σ) , c tB (σ) , c tC (σ) , c t↓ (σ) , c t↑ (σ)

)

Simplicial WL is more powerful than 3-WL[BFW+21]

Conjecture

For each n ≤ k ≤ |V (G )| and a : V (G )n −→ N and c : Sn −→ N we have
c v a|Sn

, where Sn is the collection of directed n-simplices.
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Modelling relations

Binary relations E ⊂ V × V a.k.a directed graphs!

Undirected graphs: symmetric E .

A directed graph DG is a functor DG : ∆op
≤1 −→ Set. Here,

[0] , [1] ∈ Obj (∆≤1), and Hom∆≤1
([0] , [1]) = {σ, τ} and

Hom∆≤1
([1] , [0]) = {δ}.

Thus, DG is given by the data DG ([0]) = DG0, DG ([1]) = DG1,
s, t : E −→ V and d : V −→ E .

That is, a graph is a 1d simplicial set[Lur23].

An undirected graph is a 1d symmetric simplicial set: a functor
UG : ∆op

≤1 −→ Set such that tni : UGi −→ UGi is a bijection for
i = 0, ..., n − 1

Therefore, DL v WL

Abdullah Naeem Malik (FSU) Machine Learning Seminar October XXVII, 2023 12 / 25



Modelling relations

Binary relations E ⊂ V × V a.k.a directed graphs!

Undirected graphs: symmetric E .

A directed graph DG is a functor DG : ∆op
≤1 −→ Set. Here,

[0] , [1] ∈ Obj (∆≤1), and Hom∆≤1
([0] , [1]) = {σ, τ} and

Hom∆≤1
([1] , [0]) = {δ}.

Thus, DG is given by the data DG ([0]) = DG0, DG ([1]) = DG1,
s, t : E −→ V and d : V −→ E .

That is, a graph is a 1d simplicial set[Lur23].

An undirected graph is a 1d symmetric simplicial set: a functor
UG : ∆op

≤1 −→ Set such that tni : UGi −→ UGi is a bijection for
i = 0, ..., n − 1

Therefore, DL v WL

Abdullah Naeem Malik (FSU) Machine Learning Seminar October XXVII, 2023 12 / 25



Modelling relations

Binary relations E ⊂ V × V a.k.a directed graphs!

Undirected graphs: symmetric E .

A directed graph DG is a functor DG : ∆op
≤1 −→ Set. Here,

[0] , [1] ∈ Obj (∆≤1), and Hom∆≤1
([0] , [1]) = {σ, τ} and

Hom∆≤1
([1] , [0]) = {δ}.

Thus, DG is given by the data DG ([0]) = DG0, DG ([1]) = DG1,
s, t : E −→ V and d : V −→ E .

That is, a graph is a 1d simplicial set[Lur23].

An undirected graph is a 1d symmetric simplicial set: a functor
UG : ∆op

≤1 −→ Set such that tni : UGi −→ UGi is a bijection for
i = 0, ..., n − 1

Therefore, DL v WL

Abdullah Naeem Malik (FSU) Machine Learning Seminar October XXVII, 2023 12 / 25



Modelling relations

Binary relations E ⊂ V × V a.k.a directed graphs!

Undirected graphs: symmetric E .

A directed graph DG is a functor DG : ∆op
≤1 −→ Set. Here,

[0] , [1] ∈ Obj (∆≤1), and Hom∆≤1
([0] , [1]) = {σ, τ} and

Hom∆≤1
([1] , [0]) = {δ}.

Thus, DG is given by the data DG ([0]) = DG0, DG ([1]) = DG1,
s, t : E −→ V and d : V −→ E .

That is, a graph is a 1d simplicial set[Lur23].

An undirected graph is a 1d symmetric simplicial set: a functor
UG : ∆op

≤1 −→ Set such that tni : UGi −→ UGi is a bijection for
i = 0, ..., n − 1

Therefore, DL v WL

Abdullah Naeem Malik (FSU) Machine Learning Seminar October XXVII, 2023 12 / 25



Modelling relations

Binary relations E ⊂ V × V a.k.a directed graphs!

Undirected graphs: symmetric E .

A directed graph DG is a functor DG : ∆op
≤1 −→ Set. Here,

[0] , [1] ∈ Obj (∆≤1), and Hom∆≤1
([0] , [1]) = {σ, τ} and

Hom∆≤1
([1] , [0]) = {δ}.

Thus, DG is given by the data DG ([0]) = DG0, DG ([1]) = DG1,
s, t : E −→ V and d : V −→ E .

That is, a graph is a 1d simplicial set[Lur23].

An undirected graph is a 1d symmetric simplicial set: a functor
UG : ∆op

≤1 −→ Set such that tni : UGi −→ UGi is a bijection for
i = 0, ..., n − 1

Therefore, DL v WL

Abdullah Naeem Malik (FSU) Machine Learning Seminar October XXVII, 2023 12 / 25



Modelling relations

Binary relations E ⊂ V × V a.k.a directed graphs!

Undirected graphs: symmetric E .

A directed graph DG is a functor DG : ∆op
≤1 −→ Set. Here,

[0] , [1] ∈ Obj (∆≤1), and Hom∆≤1
([0] , [1]) = {σ, τ} and

Hom∆≤1
([1] , [0]) = {δ}.

Thus, DG is given by the data DG ([0]) = DG0, DG ([1]) = DG1,
s, t : E −→ V and d : V −→ E .

That is, a graph is a 1d simplicial set[Lur23].

An undirected graph is a 1d symmetric simplicial set: a functor
UG : ∆op

≤1 −→ Set such that tni : UGi −→ UGi is a bijection for
i = 0, ..., n − 1

Therefore, DL v WL

Abdullah Naeem Malik (FSU) Machine Learning Seminar October XXVII, 2023 12 / 25



Modelling relations

Binary relations E ⊂ V × V a.k.a directed graphs!

Undirected graphs: symmetric E .

A directed graph DG is a functor DG : ∆op
≤1 −→ Set. Here,

[0] , [1] ∈ Obj (∆≤1), and Hom∆≤1
([0] , [1]) = {σ, τ} and

Hom∆≤1
([1] , [0]) = {δ}.

Thus, DG is given by the data DG ([0]) = DG0, DG ([1]) = DG1,
s, t : E −→ V and d : V −→ E .

That is, a graph is a 1d simplicial set[Lur23].

An undirected graph is a 1d symmetric simplicial set: a functor
UG : ∆op

≤1 −→ Set such that tni : UGi −→ UGi is a bijection for
i = 0, ..., n − 1

Therefore, DL v WL

Abdullah Naeem Malik (FSU) Machine Learning Seminar October XXVII, 2023 12 / 25



Modelling relations

Binary relations E ⊂ V × V a.k.a directed graphs!

Undirected graphs: symmetric E .

A directed graph DG is a functor DG : ∆op
≤1 −→ Set. Here,

[0] , [1] ∈ Obj (∆≤1), and Hom∆≤1
([0] , [1]) = {σ, τ} and

Hom∆≤1
([1] , [0]) = {δ}.

Thus, DG is given by the data DG ([0]) = DG0, DG ([1]) = DG1,
s, t : E −→ V and d : V −→ E .

That is, a graph is a 1d simplicial set[Lur23].

An undirected graph is a 1d symmetric simplicial set: a functor
UG : ∆op

≤1 −→ Set such that tni : UGi −→ UGi is a bijection for
i = 0, ..., n − 1

Therefore, DL v WL

Abdullah Naeem Malik (FSU) Machine Learning Seminar October XXVII, 2023 12 / 25



Modelling higher relations
Kan extension of DG along i : ∆≤1 −→ ∆ produces the functor
Ranı− := ı∗ : DG −→ SSets and a natural bijection
HomSSet (X , ı∗ (G )) ∼= HomG (ı∗ (X ) ,G )

v0
v1

v4

v2

v3

v1

v2

v3

v0 e12

e23e03

e01

e13
e02

v0 v1 v2 v3

e01 e02 e03 e12 e13 e23

t0123

f012

f023

f123
f013

f012 f013 f023 f123

+
- -

- -
- + +

- +
+ +

0
1

2
0 1

2
0 1

2
0

12

0

1 2

3

v0 v1 v2 v3

e01 e02 e03 e12 e13 e23

+
- -

- -
- + +

- +
+ +

v0 v1 v2 v3

e02 e03 e12 e13 e23

f012 f013 f023 f123

+
- -

- -
- + +

- +
+ +

0
1

2
0 1

2
0 1

2
0

12

e01

Clique complexes of graphs are given by Kan Extensions of UG along i
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Modelling higher relations

Lemma
Simplicial Set WLvSimplicial WL@ WL

Simplicial Set WL:

c t+1 (σ)←−hash
(
c t (σ) , c tBi

(σ) , c tCi (σ) , c t↓,i (σ) , c t↑,i (σ)
)

≡ hash
(
c t (σ) , c tBi

(σ) , c tCi (σ)
)

A hypergraph is a presheaf of the category [0] −→ [i ] for i = 1, 2, ....

So, Simplicial Set WLvHypergraph WL

In summary:

DWL v WL
t t

3DWL v 3-WL
t t

SSWL v SWL
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Top Vertices
Recall simplicial set ∆ [n]•

Algorithm 4 Creating 1-skeleton of the geometric realization of standard n-simplex

1: Inputn
2: for i from 1 to n do
3: for j from 1 to n do
4: if i < j then
5: src ← src + [i ]
6: dst ← dst + [j ]
7: edges ← edges + [(i , j)]
8: end if
9: end for

10: end for
11: Output List of directed edges edges, source vertices src and target vertices

dst
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Top Vertices

Definition
A vertex v ∈ G0 is said to be a top vertex of dimension k if there is a simplicial

set x of dimension k such that d
(1)
0 d

(2)
0 ...d

(k−1)
0 d

(k)
0 x = v , where

d
(k)
0 : Xk −→ Xk−1 is the 0-th face map.

Lemma

There is a bijective correspondence between top vertices and standard simplices.

Lemma

If v is a top vertex of dimension k, then din (v) ≥ k.

Lemma

Let A be the adjacency matrix of G, and Ã = A− diag (A). If v is a top vertex for

a k-simplex x, then the v-th column of A}
(
Ã + Ã2 + ...+ Ãk

)
is a decreasing

sequence (possibly after a permutation), starting with
k∑

n=0

(
k
n

)
.
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Top Vertices

Lemma
Let v ∈ G0, and A be the adjacency matrix associated with the graph G. If

(
A + AT

)k+1

vv
≥ 4

k∑
n=0

(
k

n

)
and

∣∣N in
1 (u) ∩ N in

1 (v)
∣∣ ≥ k − 1, then the following are equivalent:

1 ∃u ∈ N in
1 (v) such that u is a top vertex for a (k − 1)-simplex

2 v is a top vertex for a k-simplex

Way around: (A • B)ij =
n∨

k=1

aik ∧ bkj

Lemma

Let G be any directed graph. Then the i , j entry of Ã� Ã•2 � ...� Ã•k , denoted

by ã
(k)
ij , nonzero if and only if there is a path of length 1, length 2, ..., length k

from vertex i to vertex j without repeating any vertices.

Here, X̃ := X ⊕ diag (X )
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(k)
ij , nonzero if and only if there is a path of length 1, length 2, ..., length k

from vertex i to vertex j without repeating any vertices.

Here, X̃ := X ⊕ diag (X )
Abdullah Naeem Malik (FSU) Machine Learning Seminar October XXVII, 2023 17 / 25



Top Vertices

Lemma

Let v ∈ G0. Then ã
(2)
iv is nonzero if and only if v is a top 2 vertex.

Lemma

If ã
(2)
iu 6= 0, ã

(3)
iv 6= 0, u ∈ Ñ1

in (v) (i.e., u and v are top 2-vertices) and

Ñ1
out (i) ∩ Ñ1

in (u) ∩ Ñ1
in (v) is nonempty, then v is a top 3-vertex

Lemma

For three vertices u, v ,w with u ∈ Ñ1
in (v) and w ∈ Ñ1

in (v) ∩ Ñ1
in (u), if ã

(4)
iv and

ã
(3)
iu and ã

(2)
iw are nonzero, and if Ñ1

out (i) ∩ Ñ1
in (v) ∩ Ñ1

in (u) is nonempty, then

[i , x ,w , u, v ] is a 4 simplex for all x ∈ Ñ1
out (i) ∩ Ñ1

in (v) ∩ Ñ1
in (u) ∩ Ñ1

in (w)
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in (v) ∩ Ñ1
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in (w)
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Top Vertices

Lemma

Let v ∈ G0. Then ã
(2)
iv is nonzero if and only if v is a top 2 vertex.

Lemma

If ã
(2)
iu 6= 0, ã

(3)
iv 6= 0, u ∈ Ñ1

in (v) (i.e., u and v are top 2-vertices) and

Ñ1
out (i) ∩ Ñ1

in (u) ∩ Ñ1
in (v) is nonempty, then v is a top 3-vertex
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Pseudo Top Vertices

Definition
For v ∈ G0, and any integer k ≥ 1, u is said to be a k-pseudotop vertex if
∃u ∈ Ñ1

in (v) that is a (k − 1)-semitop vertex such that∣∣∣Ñ1
out (i) ∩ Ñ1

in (u) ∩ Ñ1
in (v)

∣∣∣ > k − 3, where i is a vertex such that ã
(k−1)
iu and ã

(k)
iv

are nonzero. For k = 0, all vertices are defined to be 0-semitop vertices. The
integer k is said to be the dimension of the pseudotop vertex.

u

v

i
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Pseudotop Vertex Neural Network

Algorithm 7 Required pre-processing for PTVNN

1: Find pseudotop vertices
2: Label every vertex v with its maximum dimension
3: Partition vertices based on dimension
4: Form partition vector R (v) = ([v ] , [w1] , ..., [wn]), where wi ∈ Nin (v) {Refine

partition}
5: If R (v) = R (u), then [u] = [v ].
6: Repeat until refinement stabilizes

at+1
v = AGG

(
xtv , x

t
u : u ∈ Nin (v)

)
xt+1
v = COMBINE

(
xtv , a

t+1
v

)
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Pseudotop Vertex Neural Network

Architecture 1

Make one hot encoding of partition p after refinement

If xv is feature vector of v , then form [xv .p]

Architecture 2

Make one hot encoding of vertex dimension d

Make one hot encoding of refinement index r

If xv is feature vector of v , then form [xv .d .r ]

Architecture 3

Make multi hot encoding of vertex dimension d

Make multi hot encoding of partition indices k

If xv is feature vector of v , then form [xv .k .d ]
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Implementation

Dataset: Directed citation network[HFZ+20] with 40 subject areas.
Task: subject area classification.
Code: https://abdullahnaeemmalik.github.io/portfolio/ptvnn/

The training is performed on the papers published until 2017, validated on those
published in 2018, and tested on those published since 2019.
Number of nodes=169343. Number of edges=1166243. Number of
2-simplices=2332322
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