Weisfeiler-Lehman use Simplicial Sets
 PseudoTop Vertex Neural Network

Abdullah Naeem Malik

Department of Mathematics
College of Arts and Sciences
Florida State University

October XXVII, 2023

Outline

- Weisfeiler-Lehman Algorithm and graph neural networks
- The case for higher order relations
- Kan Extensions and Indexing Categories
- Top vertices and pseudotop vertices
- Pseudotop Vertex Neural Network
- Implementation

Weisfeiler-Lehman Algorithm

Definition

A coloring of a graph $G=(V, E)$ is a function $c: V \longrightarrow \mathbb{N}$.

Weisfeiler-Lehman Algorithm

Definition

A coloring of a graph $G=(V, E)$ is a function $c: V \longrightarrow \mathbb{N}$.

Definition

A (perfect) hashing is any injective function.

Weisfeiler-Lehman Algorithm

Definition

A coloring of a graph $G=(V, E)$ is a function $c: V \longrightarrow \mathbb{N}$.

Definition

A (perfect) hashing is any injective function.
Basic idea: start with $c(v)=c^{(0)}(v)$, and $c^{(t+1)}(v)=\operatorname{hash}\left(c^{(t)}(v),\left\{\left\{c^{(t)}(w): w \in N(v)\right\}\right)[W L 68]\right.$

Weisfeiler-Lehman Algorithm

Graph 1

Source:

https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

Weisfeiler-Lehman Algorithm

Graph 1

Source:
https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

Weisfeiler-Lehman Algorithm

Source:

https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

Weisfeiler-Lehman Algorithm

Source:

https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

Weisfeiler-Lehman Algorithm

Graph 1

Source:
https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

Weisfeiler-Lehman Algorithm

Graph 1

Source:
https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

Weisfeiler-Lehman Algorithm

Graph 1

Source:
https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

Weisfeiler-Lehman Algorithm

Source:

https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

Weisfeiler-Lehman Algorithm

Algorithm 1 Weisfeiler-Lehman (WL) or Naive vertex refinement

```
1: Input: \(\left(V, E, X_{V}\right)\)
\(\left\{\triangleright x_{v} \in \mathbb{Z}_{2}^{d}\right\}\)
2: \(c(v)=c^{(0)}(v) \longleftarrow\) hash \(\left(x_{v}\right)\)
3: while \(c^{(t)}(v)=c^{(t+1)}(v) \forall v \in V\) do
4: \(\quad c^{(t+1)}(v) \longleftarrow \operatorname{hash}\left(c^{(t)}(v),\left\{\left\{c^{(t)}(w): w \in N(v)\right\}\right\}\right)\)
5: end while
```

6: Output: $c^{(T)}(v) \forall v \in V$

Weisfeiler-Lehman Algorithm

Algorithm 1 Weisfeiler-Lehman (WL) or Naive vertex refinement

```
1: Input: \(\left(V, E, X_{V}\right)\)
\(\left\{\triangleright x_{v} \in \mathbb{Z}_{2}^{d}\right\}\)
2: \(c(v)=c^{(0)}(v) \longleftarrow\) hash \(\left(x_{v}\right)\)
3: while \(c^{(t)}(v)=c^{(t+1)}(v) \forall v \in V\) do
4: \(\quad c^{(t+1)}(v) \longleftarrow \operatorname{hash}\left(c^{(t)}(v),\left\{\left\{c^{(t)}(w): w \in N(v)\right\}\right\}\right)\)
5: end while
```

6: Output: $c^{(T)}(v) \forall v \in V$

If two graphs have different colorings, then the graphs are not isomorphic. But the converse is not true[MBHSL19]

Weisfeiler-Lehman Algorithm

Algorithm 1 Weisfeiler-Lehman (WL) or Naive vertex refinement

```
1: Input: \(\left(V, E, X_{V}\right)\)
\(\left\{\triangleright x_{v} \in \mathbb{Z}_{2}^{d}\right\}\)
2: \(c(v)=c^{(0)}(v) \longleftarrow\) hash \(\left(x_{v}\right)\)
3: while \(c^{(t)}(v)=c^{(t+1)}(v) \forall v \in V\) do
4: \(\quad c^{(t+1)}(v) \longleftarrow \operatorname{hash}\left(c^{(t)}(v),\left\{\left\{c^{(t)}(w): w \in N(v)\right\}\right\}\right)\)
5: end while
6: Output: \(c^{(T)}(v) \forall v \in V\)
```

If two graphs have different colorings, then the graphs are not isomorphic. But the converse is not true[MBHSL19]

Graph Neural Networks

How powerful are graph neural networks?[MBHSL19, XHLJ18]

Graph Neural Networks

How powerful are graph neural networks?[MBHSL19, XHLJ18] For node classification: Given $\left(V, E, X_{V}\right)$, find $h_{v}=x_{v}^{(K)}$ and f such that $f\left(h_{v}\right)=x_{v}$

Graph Neural Networks

How powerful are graph neural networks?[MBHSL19, XHLJ18] For node classification: Given $\left(V, E, X_{V}\right)$, find $h_{v}=x_{v}^{(K)}$ and f such that $f\left(h_{v}\right)=x_{v}$

$$
\begin{aligned}
& a_{v}^{(k+1)}=\operatorname{AGGREGATE}^{(k+1)}\left(\left\{x_{u}^{(k)}: u \in N(v)\right\}\right), \\
& x_{v}^{(k+1)}=\operatorname{COMBINE}^{(k+1)}\left(x_{v}^{(k)}, a_{v}^{(k+1)}\right)
\end{aligned}
$$

Graph Neural Networks

How powerful are graph neural networks?[MBHSL19, XHLJ18]
For node classification: Given $\left(V, E, X_{V}\right)$, find $h_{v}=x_{v}^{(K)}$ and f such that $f\left(h_{v}\right)=x_{v}$

$$
\begin{aligned}
& a_{v}^{(k+1)}=\operatorname{AGGREGATE}^{(k+1)}\left(\left\{x_{u}^{(k)}: u \in N(v)\right\}\right), \\
& x_{v}^{(k+1)}=\operatorname{COMBINE}^{(k+1)}\left(x_{v}^{(k)}, a_{v}^{(k+1)}\right)
\end{aligned}
$$

AGGREGATE

$$
\begin{array}{ll}
\operatorname{MAX}\left(\left\{\sigma\left(W_{1} \cdot x_{u}^{(k)}\right)\right\}, u \in N(v)\right) & W_{2} \cdot\left[x_{v}^{(k)}, a_{v}^{(k+1)}\right. \\
W_{1} \cdot \operatorname{MEAN}\left(x_{u}^{(k)}, u \in N(v) \cup\{v\}\right) & \sigma\left(\left\{W_{2} \cdot a_{v}^{(k+1)}\right\}\right)
\end{array}
$$

Ref
GraphSAGE GCN

Graph Neural Networks

$$
{\underset{x}{v}}_{\stackrel{\text { or }}{(\ddot{k+1}}}=\operatorname{COMBINE}\left(x_{v}^{(k)}, \operatorname{AGGREGATE}^{(k+1)}\left(\left\{x_{u}^{(k)}: u \in N(v)\right\}\right)\right)
$$

Graph Neural Networks

```
\mp@subsup{x}{v}{(\ddot{k+1)}}=\operatorname{COMBINE}(\mp@subsup{x}{v}{(k)},\mp@subsup{\operatorname{AGGREGATE}}{}{(k+1)}({\mp@subsup{x}{u}{(k)}:u\inN(v)}))
```

Compare with
$c^{(t+1)}(v)=\operatorname{hash}\left(c^{(t)}(v),\left\{\left\{c^{(t)}(w): w \in N(v)\right\}\right\}\right)$

Graph Neural Networks

$x_{v}^{\mathrm{or}}{ }_{(\ddot{k}+1)}=\operatorname{COMBINE}\left(x_{v}^{(k)}, \operatorname{AGGREGATE}^{(k+1)}\left(\left\{x_{u}^{(k)}: u \in N(v)\right\}\right)\right)$
Compare with
$c^{(t+1)}(v)=\operatorname{hash}\left(c^{(t)}(v),\left\{\left\{c^{(t)}(w): w \in N(v)\right\}\right\}\right)$

Theorem

Let G_{1} and G_{2} be any two non-isomorphic graphs. If a graph neural network $\mathcal{A}: \mathcal{G} \longrightarrow \mathbb{R}^{d}$ maps G_{1} and G_{2} to different embeddings, the Weisfeiler-Lehman graph isomorphism test also decides G_{1} and G_{2} are not isomorphic. Converse holds if COMBINE and AGGREGATE are injective[XHLJ18].

k-Weisfeiler-Lehman Algorithm

Algorithm $1 k$-Weisfeiler-Lehman (k-WL)
1: Input: $\left(V, E, X_{V}\right)$
2: $c(\vec{v})=c^{(0)}(\vec{v}) \longleftarrow$ hash $\left(x_{\vec{v}}\right)$
3: while $c^{(t)}(\vec{v})=c^{(t+1)}(\vec{v}) \forall \vec{v} \in V^{k}$ do
4: $\quad c_{i}^{(t+1)}(\vec{V}) \longleftarrow\left\{\left\{c^{(t)}(\vec{w}): w \in N_{i}(\vec{v})\right\}\right\} \forall \vec{V} \in V^{k}$
5: $\quad c^{(t+1)}(\vec{v}) \longleftarrow$ hash $\left(c^{(t)}(\vec{v}), c_{1}^{(t+1)}(\vec{v}), \ldots, c_{k}^{(t+1)}(\vec{v})\right) \forall \vec{v} \in V^{k}$
6: end while
7: Output: $c^{(T)}(\vec{v}) \forall \vec{V} \in V^{k}$

Here, hash $\left(x_{\vec{v}}\right)=\operatorname{hash}\left(x_{\vec{w}}\right)$ iff $x_{v_{i}}=x_{w_{i}}$ and if $\left(v_{i}, v_{j}\right) \in E$ iff $\left(w_{i}, w_{j}\right) \in E$ and $N_{i}(\vec{v})=\left\{\left(v_{1}, \ldots, v_{i-1}, u, v_{i+1}, \ldots, v_{k}\right): u \in V\right\}$

k-Weisfeiler-Lehman Algorithm

Algorithm $2 k$-Weisfeiler-Lehman (k-WL)
1: Input: $\left(V, E, X_{V}\right)$
2: $c(\vec{v})=c^{(0)}(\vec{v}) \longleftarrow$ hash $\left(x_{\vec{v}}\right)$
3: while $c^{(t)}(\vec{v})=c^{(t+1)}(\vec{v}) \forall \vec{v} \in V^{k}$ do
4: $\quad c_{i}^{(t+1)}(\vec{V}) \longleftarrow\left\{\left\{c^{(t)}(\vec{w}): w \in N_{i}(\vec{v})\right\}\right\} \forall \vec{V} \in V^{k}$
5: $\quad c^{(t+1)}(\vec{v}) \longleftarrow$ hash $\left(c^{(t)}(\vec{v}), c_{1}^{(t+1)}(\vec{v}), \ldots, c_{k}^{(t+1)}(\vec{v})\right) \forall \vec{v} \in V^{k}$
6: end while
7: Output: $c^{(T)}(\vec{v}) \forall \vec{V} \in V^{k}$

Here, hash $\left(x_{\vec{v}}\right)=\operatorname{hash}\left(x_{\vec{w}}\right)$ iff $x_{v_{i}}=x_{w_{i}}$ and if $\left(v_{i}, v_{j}\right) \in E$ iff $\left(w_{i}, w_{j}\right) \in E$ and $N_{i}(\vec{v})=\left\{\left(v_{1}, \ldots, v_{i-1}, u, v_{i+1}, \ldots, v_{k}\right): u \in V\right\}$
$N_{i}(\vec{v})=\left\{\left(i, v_{2} \ldots, v_{k}\right),\left(v_{1}, i, \ldots, v_{k}\right), \ldots,\left(v_{1}, \ldots, v_{k-1}, i\right): i \in V\right\}$ for Folklore k-WL

k-Weisfeiler-Lehman Algorithm

Algorithm $3 k$-Weisfeiler-Lehman (k-WL)
1: Input: $\left(V, E, X_{V}\right)$
2: $c(\vec{v})=c^{(0)}(\vec{v}) \longleftarrow$ hash $\left(x_{\vec{v}}\right)$
3: while $c^{(t)}(\vec{v})=c^{(t+1)}(\vec{v}) \forall \vec{v} \in V^{k}$ do
4: $\quad c_{i}^{(t+1)}(\vec{V}) \longleftarrow\left\{\left\{c^{(t)}(\vec{w}): w \in N_{i}(\vec{v})\right\}\right\} \forall \vec{V} \in V^{k}$
5: $\quad c^{(t+1)}(\vec{v}) \longleftarrow$ hash $\left(c^{(t)}(\vec{v}), c_{1}^{(t+1)}(\vec{v}), \ldots, c_{k}^{(t+1)}(\vec{v})\right) \forall \vec{v} \in V^{k}$
6: end while
7: Output: $c^{(T)}(\vec{v}) \forall \vec{V} \in V^{k}$

Here, hash $\left(x_{\vec{v}}\right)=\operatorname{hash}\left(x_{\vec{w}}\right)$ iff $x_{v_{i}}=x_{w_{i}}$ and if $\left(v_{i}, v_{j}\right) \in E$ iff $\left(w_{i}, w_{j}\right) \in E$ and $N_{i}(\vec{v})=\left\{\left(v_{1}, \ldots, v_{i-1}, u, v_{i+1}, \ldots, v_{k}\right): u \in V\right\}$
$N_{i}(\vec{v})=\left\{\left(i, v_{2} \ldots, v_{k}\right),\left(v_{1}, i, \ldots, v_{k}\right), \ldots,\left(v_{1}, \ldots, v_{k-1}, i\right): i \in V\right\}$ for Folklore k-WL
For directed graphs, use
$c^{t+1}(v) \longleftarrow \operatorname{hash}\left(c^{(t)}(v),\left\{\left\{c^{(t)}(w): w \in N_{\text {in }}(v)\right\},\left\{\left\{c^{(t)}(w): w \in N_{\text {out }}(v)\right\}\right\}\right)\right.$ [MG21]

WL-kernels

Can be used to make different neural networks.

WL-kernels

Can be used to make different neural networks.

$$
\begin{aligned}
& x_{S}^{(t)}=\sigma\left(x_{S}^{(t-1)} \cdot W_{1}^{(t)}+\sum_{u \in N_{L}(S) \cup N_{G}(S)} x_{u}^{(t-1)} \cdot W_{2}^{(t)}\right) \text { (global) } \\
& x_{S}^{(t)}=\sigma\left(x_{S}^{(t-1)} \cdot W_{1}^{(t)}+\sum_{u \in N_{L}(S)} x_{u}^{(t-1)} \cdot W_{2}^{(t)}\right) \text { (local) }
\end{aligned}
$$

where $S=\left(v_{1}, \ldots, v_{k}\right)$,
$N_{L}(S)=\left\{T \in V^{k}:|S \cap T|=k-1,(v, w) \in E\right.$ for some unique $\left.v, w \in S \backslash T\right\}$ $N(S)=\left\{T \in V^{k}:|S \cap T|=k-1\right\}, N_{G}(S)=N(S) \backslash N_{L}(S)\left[\mathrm{MRF}^{+} 19\right]$.

Strength of WL Tests

- 2-WL \equiv WL[MBHSL19]

Strength of WL Tests

- 2-WL \equiv WL[MBHSL19]
- k-WL is strictly weaker than $(k+1)-\mathrm{WL}[\mathrm{HV} 21]((k+1)-\mathrm{WL} \sqsubset k-\mathrm{WL})$

Strength of WL Tests

- $2-\mathrm{WL} \equiv \mathrm{WL}[\mathrm{MBHSL} 19]$
- $k-W L$ is strictly weaker than $(k+1)-\mathrm{WL}[\mathrm{HV} 21]((k+1)-\mathrm{WL} \sqsubset k-\mathrm{WL})$
- Therefore, the architecture of [MRF $\left.{ }^{+} 19\right]$ performs better than simple message passing.

Strength of WL Tests

- $2-\mathrm{WL} \equiv \mathrm{WL}[\mathrm{MBHSL} 19]$
- $k-W L$ is strictly weaker than $(k+1)-\mathrm{WL}[\mathrm{HV} 21]((k+1)-\mathrm{WL} \sqsubset k-\mathrm{WL})$
- Therefore, the architecture of $\left[\mathrm{MRF}^{+} 19\right]$ performs better than simple message passing.
- $(k+1)-\mathrm{WL} \equiv k-\mathrm{FWL}[\mathrm{HV} 21]$

Strength of WL Tests

- 2-WL \equiv WL[MBHSL19]
- $k-W L$ is strictly weaker than $(k+1)-\mathrm{WL}[\mathrm{HV} 21]((k+1)-\mathrm{WL} \sqsubset k-\mathrm{WL})$
- Therefore, the architecture of [MRF $\left.{ }^{+} 19\right]$ performs better than simple message passing.
- $(k+1)-\mathrm{WL} \equiv k$-FWL[HV21]
- For every k, there is an infinite family of graphs for which the $k-W L$ test fails[CFI92]

Strength of WL Tests

- $2-\mathrm{WL} \equiv \mathrm{WL}[\mathrm{MBHSL} 19]$
- $k-W L$ is strictly weaker than $(k+1)-\mathrm{WL}[\mathrm{HV} 21]((k+1)-\mathrm{WL} \sqsubset k-\mathrm{WL})$
- Therefore, the architecture of [MRF $\left.{ }^{+} 19\right]$ performs better than simple message passing.
- $(k+1)-\mathrm{WL} \equiv k$-FWL[HV21]
- For every k, there is an infinite family of graphs for which the $k-W L$ test fails[CFI92]
- Note: DWL $\sqsubseteq W L$, so GNN with directed edges are more powerful[RCDG ${ }^{+}$23]
$a_{v}^{(k+1)}=\operatorname{AGGREGATE}^{(k+1)}\left(\left\{x_{u}^{(k)}, x_{v}^{(k)}:(u, v) \in E\right\}\right)$

The case for higher order relations

Simplicial WL $\left[\mathrm{BFW}^{+} 21\right]$ uses
$c^{t+1}(\sigma) \longleftarrow \operatorname{hash}\left(c^{t}(\sigma), c_{\mathcal{B}}^{t}(\sigma), c_{\mathcal{C}}^{t}(\sigma), c_{\downarrow}^{t}(\sigma), c_{\uparrow}^{t}(\sigma)\right)$

The case for higher order relations

Simplicial WL $\left[\mathrm{BFW}^{+} 21\right]$ uses
$c^{t+1}(\sigma) \longleftarrow \operatorname{hash}\left(c^{t}(\sigma), c_{\mathcal{B}}^{t}(\sigma), c_{\mathcal{C}}^{t}(\sigma), c_{\downarrow}^{t}(\sigma), c_{\uparrow}^{t}(\sigma)\right)$
Simplicial WL is more powerful than 3-WL[BFW $\left.{ }^{+} 21\right]$

The case for higher order relations

Simplicial WL $\left[\mathrm{BFW}^{+} 21\right]$ uses
$c^{t+1}(\sigma) \longleftarrow \operatorname{hash}\left(c^{t}(\sigma), c_{\mathcal{B}}^{t}(\sigma), c_{\mathcal{C}}^{t}(\sigma), c_{\downarrow}^{t}(\sigma), c_{\uparrow}^{t}(\sigma)\right)$
Simplicial WL is more powerful than 3-WL[BFW $\left.{ }^{+} 21\right]$

Conjecture

For each $n \leq k \leq|V(G)|$ and $a: V(G)^{n} \longrightarrow \mathbb{N}$ and $c: S_{n} \longrightarrow \mathbb{N}$ we have $\left.c \sqsubseteq a\right|_{S_{n}}$, where S_{n} is the collection of directed n-simplices.

Modelling relations

- Binary relations $E \subset V \times V$ a.k.a directed graphs!

Modelling relations

- Binary relations $E \subset V \times V$ a.k.a directed graphs!

Modelling relations

- Binary relations $E \subset V \times V$ a.k.a directed graphs!
- Undirected graphs: symmetric E.

Modelling relations

- Binary relations $E \subset V \times V$ a.k.a directed graphs!
- Undirected graphs: symmetric E.
- A directed graph $D G$ is a functor $D G: \Delta_{\leq 1}^{o p} \longrightarrow \mathcal{S e t}$. Here, $[0],[1] \in \operatorname{Obj}\left(\Delta_{\leq 1}\right)$, and $\operatorname{Hom}_{\Delta_{\leq 1}}([0],[1])=\{\sigma, \tau\}$ and $\operatorname{Hom}_{\Delta_{\leq 1}}([1],[0])=\{\delta\}$.

Modelling relations

- Binary relations $E \subset V \times V$ a.k.a directed graphs!
- Undirected graphs: symmetric E.
- A directed graph $D G$ is a functor $D G: \Delta_{\leq 1}^{o p} \longrightarrow \mathcal{S e t}$. Here, $[0],[1] \in \operatorname{Obj}\left(\Delta_{\leq 1}\right)$, and $\operatorname{Hom}_{\Delta_{\leq 1}}([0],[1])=\{\sigma, \tau\}$ and $\operatorname{Hom}_{\Delta_{\leq 1}}([1],[0])=\{\delta\}$.
- Thus, $D G$ is given by the data $D G([0])=D G_{0}, D G([1])=D G_{1}$, $s, t: E \longrightarrow V$ and $d: V \longrightarrow E$.

Modelling relations

- Binary relations $E \subset V \times V$ a.k.a directed graphs!
- Undirected graphs: symmetric E.
- A directed graph $D G$ is a functor $D G: \Delta_{\leq 1}^{o p} \longrightarrow \mathcal{S e t}$. Here, $[0],[1] \in \operatorname{Obj}\left(\Delta_{\leq 1}\right)$, and $\operatorname{Hom}_{\Delta_{\leq 1}}([0],[1])=\{\sigma, \tau\}$ and $\operatorname{Hom}_{\Delta_{\leq 1}}([1],[0])=\{\delta\}$.
- Thus, $D G$ is given by the data $D G([0])=D G_{0}, D G([1])=D G_{1}$, $s, t: E \longrightarrow V$ and $d: V \longrightarrow E$.
- That is, a graph is a 1 d simplicial set[Lur23].

Modelling relations

- Binary relations $E \subset V \times V$ a.k.a directed graphs!
- Undirected graphs: symmetric E.
- A directed graph $D G$ is a functor $D G: \Delta_{\leq 1}^{o p} \longrightarrow \mathcal{S e t}$. Here, $[0],[1] \in \operatorname{Obj}\left(\Delta_{\leq 1}\right)$, and $\operatorname{Hom}_{\Delta_{\leq 1}}([0],[1])=\{\sigma, \tau\}$ and $\operatorname{Hom}_{\Delta_{\leq 1}}([1],[0])=\{\delta\}$.
- Thus, $D G$ is given by the data $D G([0])=D G_{0}, D G([1])=D G_{1}$, $s, t: E \longrightarrow V$ and $d: V \longrightarrow E$.
- That is, a graph is a 1 d simplicial set[Lur23].
- An undirected graph is a 1d symmetric simplicial set: a functor $U G: \Delta_{\leq 1}^{o p} \longrightarrow \mathcal{S}$ et such that $t_{i}^{n}: U G_{i} \longrightarrow U G_{i}$ is a bijection for $i=0, \ldots, n-1$

Modelling relations

- Binary relations $E \subset V \times V$ a.k.a directed graphs!
- Undirected graphs: symmetric E.
- A directed graph $D G$ is a functor $D G: \Delta_{\leq 1}^{o p} \longrightarrow \mathcal{S e t}$. Here, $[0],[1] \in \operatorname{Obj}\left(\Delta_{\leq 1}\right)$, and $\operatorname{Hom}_{\Delta_{\leq 1}}([0],[1])=\{\sigma, \tau\}$ and $\operatorname{Hom}_{\Delta_{\leq 1}}([1],[0])=\{\delta\}$.
- Thus, $D G$ is given by the data $D G([0])=D G_{0}, D G([1])=D G_{1}$, $s, t: E \longrightarrow V$ and $d: V \longrightarrow E$.
- That is, a graph is a 1 d simplicial set[Lur23].
- An undirected graph is a 1d symmetric simplicial set: a functor $U G: \Delta_{\leq 1}^{o p} \longrightarrow \mathcal{S}$ et such that $t_{i}^{n}: U G_{i} \longrightarrow U G_{i}$ is a bijection for $i=0, \ldots, n-1$
- Therefore, DL $\sqsubseteq \mathrm{WL}$

Modelling higher relations

Kan extension of $D G$ along $i: \Delta_{\leq 1} \longrightarrow \Delta$ produces the functor Ran $_{\imath}-:=i_{*}: \mathcal{D G} \longrightarrow \mathcal{S S}$ ets and a natural bijection $\operatorname{Hom}_{\mathcal{S} S_{e t}}\left(X, \imath_{*}(G)\right) \cong \operatorname{Hom}_{\mathcal{G}}\left(\imath^{*}(X), G\right)$

Modelling higher relations

Kan extension of $D G$ along $i: \Delta_{\leq 1} \longrightarrow \Delta$ produces the functor Ran $_{2}-:=i_{*}: \mathcal{D G} \longrightarrow \mathcal{S S}$ ets and a natural bijection $\operatorname{Hom}_{\mathcal{S} S_{e t}}\left(X, \imath_{*}(G)\right) \cong \operatorname{Hom}_{\mathcal{G}}\left(\imath^{*}(X), G\right)$

Modelling higher relations

Kan extension of $D G$ along $i: \Delta_{\leq 1} \longrightarrow \Delta$ produces the functor Ran $_{2}-:=i_{*}: \mathcal{D G} \longrightarrow \mathcal{S S}$ ets and a natural bijection $\operatorname{Hom}_{\mathcal{S} S_{e t}}\left(X, \imath_{*}(G)\right) \cong \operatorname{Hom}_{\mathcal{G}}\left(\imath^{*}(X), G\right)$

Clique complexes of graphs are given by Kan Extensions of $U G$ along i

Modelling higher relations

Lemma

Simplicial Set WL■Simplicial WL■ WL

Modelling higher relations

Lemma

Simplicial Set WL■Simplicial WL■ WL

- Simplicial Set WL:

$$
c^{t+1}(\sigma) \longleftarrow \operatorname{hash}\left(c^{t}(\sigma), c_{\mathcal{B}_{i}}^{t}(\sigma), c_{\mathcal{C}_{i}}^{t}(\sigma), c_{\downarrow, i}^{t}(\sigma), c_{\uparrow, i}^{t}(\sigma)\right)
$$

Modelling higher relations

Lemma

Simplicial Set WL■Simplicial WL■ WL

- Simplicial Set WL:

$$
c^{t+1}(\sigma) \longleftarrow \operatorname{hash}\left(c^{t}(\sigma), c_{\mathcal{B}_{i}}^{t}(\sigma), c_{\mathcal{C}_{i}}^{t}(\sigma), c_{\downarrow, i}^{t}(\sigma), c_{\uparrow, i}^{t}(\sigma)\right)
$$

- $\equiv \operatorname{hash}\left(c^{t}(\sigma), c_{\mathcal{B}_{i}}^{t}(\sigma), c_{\mathcal{C}_{i}}^{t}(\sigma)\right)$

Modelling higher relations

Lemma

Simplicial Set WL■Simplicial WL■ WL

- Simplicial Set WL:

$$
\begin{aligned}
& c^{t+1}(\sigma) \longleftarrow \operatorname{hash}\left(c^{t}(\sigma), c_{\mathcal{B}_{i}}^{t}(\sigma), c_{\mathcal{C}_{i}}^{t}(\sigma), c_{\downarrow, i}^{t}(\sigma), c_{\uparrow, i}^{t}(\sigma)\right) \\
\bullet & \equiv \operatorname{hash}\left(c^{t}(\sigma), c_{\mathcal{B}_{i}}^{t}(\sigma), c_{\mathcal{C}_{i}}^{t}(\sigma)\right)
\end{aligned}
$$

- A hypergraph is a presheaf of the category $[0] \longrightarrow[i]$ for $i=1,2, \ldots$.

Modelling higher relations

Lemma

Simplicial Set WL■Simplicial WL■ WL

- Simplicial Set WL:

$$
\begin{aligned}
& c^{t+1}(\sigma) \longleftarrow \operatorname{hash}\left(c^{t}(\sigma), c_{\mathcal{B}_{i}}^{t}(\sigma), c_{\mathcal{C}_{i}}^{t}(\sigma), c_{\downarrow, i}^{t}(\sigma), c_{\uparrow, i}^{t}(\sigma)\right) \\
\bullet & \equiv \operatorname{hash}\left(c^{t}(\sigma), c_{\mathcal{B}_{i}}^{t}(\sigma), c_{\mathcal{C}_{i}}^{t}(\sigma)\right)
\end{aligned}
$$

- A hypergraph is a presheaf of the category $[0] \longrightarrow[i]$ for $i=1,2, \ldots$.
- So, Simplicial Set WL巨Hypergraph WL

Modelling higher relations

Lemma

Simplicial Set WL■Simplicial WL■ WL

- Simplicial Set WL:

$$
\begin{aligned}
& c^{t+1}(\sigma) \longleftarrow \operatorname{hash}\left(c^{t}(\sigma), c_{\mathcal{B}_{i}}^{t}(\sigma), c_{\mathcal{C}_{i}}^{t}(\sigma), c_{\downarrow, i}^{t}(\sigma), c_{\uparrow, i}^{t}(\sigma)\right) \\
\bullet & \equiv \operatorname{hash}\left(c^{t}(\sigma), c_{\mathcal{B}_{i}}^{t}(\sigma), c_{\mathcal{C}_{i}}^{t}(\sigma)\right)
\end{aligned}
$$

- A hypergraph is a presheaf of the category $[0] \longrightarrow[i]$ for $i=1,2, \ldots$.
- So, Simplicial Set WL巨Hypergraph WL

Modelling higher relations

Lemma

Simplicial Set WL■Simplicial WL■ WL

- Simplicial Set WL:

$$
c^{t+1}(\sigma) \longleftarrow \operatorname{hash}\left(c^{t}(\sigma), c_{\mathcal{B}_{i}}^{t}(\sigma), c_{\mathcal{C}_{i}}^{t}(\sigma), c_{\downarrow, i}^{t}(\sigma), c_{\uparrow, i}^{t}(\sigma)\right)
$$

- $\equiv \operatorname{hash}\left(c^{t}(\sigma), c_{\mathcal{B}_{i}}^{t}(\sigma), c_{\mathcal{C}_{i}}^{t}(\sigma)\right)$
- A hypergraph is a presheaf of the category $[0] \longrightarrow[i]$ for $i=1,2, \ldots$.
- So, Simplicial Set WLநHypergraph WL

In summary:

Top Vertices

Recall simplicial set $\Delta[n]$.

Top Vertices

Recall simplicial set $\Delta[n]$.

Top Vertices

Recall simplicial set $\Delta[n]$.

Algorithm 6 Creating 1 -skeleton of the geometric realization of standard n-simplex

1: Inputn
2: for i from 1 to n do
3: \quad for j from 1 to n do
4: if $i<j$ then $\operatorname{src} \leftarrow \operatorname{src}+[i]$
dst \leftarrow dst $+[j]$
edges \leftarrow edges $+[(i, j)]$
end if
end for
10: end for
11: Output List of directed edges edges, source vertices src and target vertices

Top Vertices

Definition

A vertex $v \in G_{0}$ is said to be a top vertex of dimension k if there is a simplicial set x of dimension k such that $d_{0}^{(1)} d_{0}^{(2)} \ldots d_{0}^{(k-1)} d_{0}^{(k)} x=v$, where $d_{0}^{(k)}: X_{k} \longrightarrow X_{k-1}$ is the 0-th face map.

Top Vertices

Definition

A vertex $v \in G_{0}$ is said to be a top vertex of dimension k if there is a simplicial set x of dimension k such that $d_{0}^{(1)} d_{0}^{(2)} \ldots d_{0}^{(k-1)} d_{0}^{(k)} x=v$, where $d_{0}^{(k)}: X_{k} \longrightarrow X_{k-1}$ is the 0-th face map.

Lemma

There is a bijective correspondence between top vertices and standard simplices.

Top Vertices

Definition

A vertex $v \in G_{0}$ is said to be a top vertex of dimension k if there is a simplicial set x of dimension k such that $d_{0}^{(1)} d_{0}^{(2)} \ldots d_{0}^{(k-1)} d_{0}^{(k)} x=v$, where $d_{0}^{(k)}: X_{k} \longrightarrow X_{k-1}$ is the 0-th face map.

Lemma

There is a bijective correspondence between top vertices and standard simplices.

Lemma

If v is a top vertex of dimension k, then $d_{i n}(v) \geq k$.

Top Vertices

Definition

A vertex $v \in G_{0}$ is said to be a top vertex of dimension k if there is a simplicial set x of dimension k such that $d_{0}^{(1)} d_{0}^{(2)} \ldots d_{0}^{(k-1)} d_{0}^{(k)} x=v$, where $d_{0}^{(k)}: X_{k} \longrightarrow X_{k-1}$ is the 0-th face map.

Lemma

There is a bijective correspondence between top vertices and standard simplices.

Lemma

If v is a top vertex of dimension k, then $d_{i n}(v) \geq k$.

Lemma

Let A be the adjacency matrix of G, and $\widetilde{A}=A-\operatorname{diag}(A)$. If v is a top vertex for a k-simplex x, then the v-th column of $A \odot\left(\widetilde{A}+\widetilde{A}^{2}+\ldots+\widetilde{A}^{k}\right)$ is a decreasing sequence (possibly after a permutation), starting with $\sum_{n=0}^{k}\binom{k}{n}$.

Top Vertices

Lemma

Let $v \in G_{0}$, and A be the adjacency matrix associated with the graph G. If

$$
\left(A+A^{T}\right)_{v v}^{k+1} \geq 4 \sum_{n=0}^{k}\binom{k}{n}
$$

and $\left|N_{1}^{i n}(u) \cap N_{1}^{i n}(v)\right| \geq k-1$, then the following are equivalent:
(1) $\exists u \in N_{1}^{\text {in }}(v)$ such that u is a top vertex for a $(k-1)$-simplex
(3) v is a top vertex for a k-simplex

Top Vertices

Lemma

Let $v \in G_{0}$, and A be the adjacency matrix associated with the graph G. If

$$
\left(A+A^{T}\right)_{v v}^{k+1} \geq 4 \sum_{n=0}^{k}\binom{k}{n}
$$

and $\left|N_{1}^{i n}(u) \cap N_{1}^{i n}(v)\right| \geq k-1$, then the following are equivalent:
(1) $\exists u \in N_{1}^{\text {in }}(v)$ such that u is a top vertex for a $(k-1)$-simplex
(3) v is a top vertex for a k-simplex

Way around: $(A \bullet B)_{i j}=\bigvee_{k=1}^{n} a_{i k} \wedge b_{k j}$

Top Vertices

Lemma

Let $v \in G_{0}$, and A be the adjacency matrix associated with the graph G. If

$$
\left(A+A^{T}\right)_{v v}^{k+1} \geq 4 \sum_{n=0}^{k}\binom{k}{n}
$$

and $\left|N_{1}^{i n}(u) \cap N_{1}^{i n}(v)\right| \geq k-1$, then the following are equivalent:
(1) $\exists u \in N_{1}^{\text {in }}(v)$ such that u is a top vertex for a $(k-1)$-simplex
(3) v is a top vertex for a k-simplex

Way around: $(A \bullet B)_{i j}=\bigvee_{k=1}^{n} a_{i k} \wedge b_{k j}$

Lemma

Let G be any directed graph. Then the i, j entry of $\widetilde{A} \odot \widetilde{A^{\bullet 2}} \odot \ldots \odot \widetilde{A^{\bullet k}}$, denoted by $\tilde{a}_{i j}^{(k)}$, nonzero if and only if there is a path of length 1 , length $2, \ldots$, length k from vertex i to vertex j without repeating any vertices.

Here, $\widetilde{X}:=X \oplus \operatorname{diag}(X)$

Top Vertices

Lemma

Let $v \in G_{0}$. Then $\widetilde{a}_{i v}^{(2)}$ is nonzero if and only if v is a top 2 vertex.

Top Vertices

Lemma

Let $v \in G_{0}$. Then $\tilde{a}_{i v}^{(2)}$ is nonzero if and only if v is a top 2 vertex.

Lemma

If $\widetilde{\mathrm{a}}_{i u}^{(2)} \neq 0, \widetilde{a}_{i v}^{(3)} \neq 0, u \in \widetilde{N}_{\text {in }}^{1}(v)$ (i.e., u and v are top 2 -vertices) and $\widetilde{N}_{\text {out }}^{1}(i) \cap \widetilde{N}_{\text {in }}^{1}(u) \cap \widetilde{N}_{\text {in }}^{1}(v)$ is nonempty, then v is a top 3-vertex

Top Vertices

Lemma

Let $v \in G_{0}$. Then $\tilde{a}_{i v}^{(2)}$ is nonzero if and only if v is a top 2 vertex.

Lemma

If $\widetilde{a}_{i u}^{(2)} \neq 0, \widetilde{a}_{i v}^{(3)} \neq 0, u \in \widetilde{N}_{\text {in }}^{1}(v)$ (i.e., u and v are top 2-vertices) and $\widetilde{N}_{\text {out }}^{1}(i) \cap \widetilde{N}_{\text {in }}^{1}(u) \cap \widetilde{N}_{\text {in }}^{1}(v)$ is nonempty, then v is a top 3-vertex

Lemma

For three vertices u, v, w with $u \in \widetilde{N}_{i n}^{1}(v)$ and $w \in \widetilde{N}_{i n}^{1}(v) \cap \widetilde{N}_{i n}^{1}(u)$, if $\widetilde{\mathcal{N}}_{i v}^{(4)}$ and $\widetilde{a}_{i u}^{(3)}$ and $\widetilde{a}_{i w}^{(2)}$ are nonzero, and if $\widetilde{N}_{\text {out }}^{1}(i) \cap \widetilde{N}_{i n}^{1}(v) \cap \widetilde{N}_{\text {in }}^{1}(u)$ is nonempty, then $[i, x, w, u, v]$ is a 4 simplex for all $x \in \widetilde{N}_{\text {out }}^{1}(i) \cap \widetilde{N}_{\text {in }}^{1}(v) \cap \widetilde{N}_{\text {in }}^{1}(u) \cap \widetilde{N}_{\text {in }}^{1}(w)$

Pseudo Top Vertices

Definition

For $v \in G_{0}$, and any integer $k \geq 1, u$ is said to be a k-pseudotop vertex if $\exists u \in \widetilde{N}_{i n}^{1}(v)$ that is a $(k-1)$-semitop vertex such that $\left|\widetilde{N}_{\text {out }}^{1}(i) \cap \widetilde{N}_{\text {in }}^{1}(u) \cap \widetilde{N}_{\text {in }}^{1}(v)\right|>k-3$, where i is a vertex such that $\widetilde{a}_{i u}^{(k-1)}$ and $\widetilde{\mathrm{a}}_{i v}^{(k)}$ are nonzero. For $k=0$, all vertices are defined to be 0 -semitop vertices. The integer k is said to be the dimension of the pseudotop vertex.

Pseudotop Vertex Neural Network

Algorithm 7 Required pre-processing for PTVNN

1: Find pseudotop vertices
2: Label every vertex v with its maximum dimension
3: Partition vertices based on dimension
4: Form partition vector $R(v)=\left([v],\left[w_{1}\right], \ldots,\left[w_{n}\right]\right)$, where $w_{i} \in N_{i n}(v)$ \{Refine partition $\}$
5: If $R(v)=R(u)$, then $[u]=[v]$.
6: Repeat until refinement stabilizes

$$
\begin{aligned}
\mathbf{a}_{v}^{t+1} & =\operatorname{AGG}\left(\mathbf{x}_{v}^{t}, \mathbf{x}_{u}^{t}: u \in N_{i n}(v)\right) \\
\mathbf{x}_{v}^{t+1} & =\operatorname{COMBINE}\left(\mathbf{x}_{v}^{t}, \mathbf{a}_{v}^{t+1}\right)
\end{aligned}
$$

Pseudotop Vertex Neural Network

Architecture 1

- Make one hot encoding of partition p after refinement
- If x_{v} is feature vector of v, then form $\left[x_{v} \cdot p\right]$

Pseudotop Vertex Neural Network

Architecture 1

- Make one hot encoding of partition p after refinement
- If x_{v} is feature vector of v, then form $\left[x_{v} \cdot p\right]$

Architecture 2

- Make one hot encoding of vertex dimension d
- Make one hot encoding of refinement index r
- If x_{v} is feature vector of v, then form [$x_{v}, d . r$]

Pseudotop Vertex Neural Network

Architecture 1

- Make one hot encoding of partition p after refinement
- If x_{v} is feature vector of v, then form $\left[x_{v} \cdot p\right]$

Architecture 2

- Make one hot encoding of vertex dimension d
- Make one hot encoding of refinement index r
- If x_{v} is feature vector of v, then form [x_{v}. d.r]

Architecture 3

- Make multi hot encoding of vertex dimension d
- Make multi hot encoding of partition indices k
- If x_{v} is feature vector of v, then form [$x_{v} \cdot k . d$]

Implementation

Dataset: Directed citation network[HFZ $\left.{ }^{+} 20\right]$ with 40 subject areas. Task: subject area classification.
Code: https://abdullahnaeemmalik.github.io/portfolio/ptvnn/

Implementation

Dataset: Directed citation network[HFZ $\left.{ }^{+} 20\right]$ with 40 subject areas. Task: subject area classification.
Code: https://abdullahnaeemmalik.github.io/portfolio/ptvnn/
The training is performed on the papers published until 2017, validated on those published in 2018, and tested on those published since 2019.

Implementation

Dataset: Directed citation network[HFZ $\left.{ }^{+} 20\right]$ with 40 subject areas.
Task: subject area classification.
Code: https://abdullahnaeemmalik.github.io/portfolio/ptvnn/
The training is performed on the papers published until 2017, validated on those published in 2018, and tested on those published since 2019.
Number of nodes $=169343$. Number of edges $=1166243$. Number of 2-simplices $=2332322$

References I

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and Michael Bronstein, Weisfeiler and lehman go topological: Message passing simplicial networks, International Conference on Machine Learning, PMLR, 2021, pp. 1026-1037.
Jin-Yi Cai, Martin Fürer, and Neil Immerman, An optimal lower bound on the number of variables for graph identification, Combinatorica 12 (1992), no. 4, 389-410.
围 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure Leskovec, Open graph benchmark: Datasets for machine learning on graphs, arXiv preprint arXiv:2005.00687 (2020).
Ningyuan Teresa Huang and Soledad Villar, A short tutorial on the weisfeiler-lehman test and its variants, ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2021, pp. 8533-8537.
围 Jacob Lurie, Kerodon, https://kerodon.net, 2023.

References II

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman, Provably powerful graph networks, Advances in neural information processing systems 32 (2019).
國 Martin Mladenov Pascal Schweitzer Martin Grohe, Kristian Kersting, Color refinement and its applications, An Introduction to Lifted Probabilistic Inference (Sriraam Natarajan Davide Poole Guy Van den Broeck, Kristian Kersting, ed.), MIT Press, 2021.
© Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe, Weisfeiler and leman go neural: Higher-order graph neural networks, Proceedings of the AAAI conference on artificial intelligence, vol. 33, 2019, pp. 4602-4609.
Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Günnemann, and Michael Bronstein, Edge directionality improves learning on heterophilic graphs, arXiv preprint arXiv:2305.10498 (2023).

References III

固 Boris Weisfeiler and Andrei Leman, The reduction of a graph to canonical form and the algebra which appears therein, nti, Series 2 (1968), no. 9, 12-16.
围 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka, How powerful are graph neural networks?, arXiv preprint arXiv:1810.00826 (2018).

