Technology Embedded Hybrid Learning

Published in, 2018

This preprint is a culmination of the proposal that marked the introduction of hybrid courses to COMSATS Institute of Information Technology, and the evolution of its model as an amalgam of the traditional class room model augmented with the aid of state-of-the-art online learning technologies. Two hybrid courses were offered to full-time students, with all the courses in traditional classroom mode, except one course offered as hybrid course, with both synchornous and asynchronous learning modalities. A survey and its results of the pilot program are presented.

Recommended citation: Behzad, M.; Adnan, N.; Malik, A.N..; Merchant, S.A. Technology-Embedded Hybrid Learning. Preprints 2018, 2018030229.

Effects of Gender on the Performance of Microenterprises in Pakistan

Published in The International Journal of Humanities & Social Studies, 2017

In Pakistan, there has been a surge in women entrepreneurship, either as a sole proprietorship or joint partnership mostly with male family members. Using non-randomized data, in this paper we compare the impact of gender of owner on the performance of the enterprise in Pakistan. Our results show an intricate association between the gender of the owner and the performance of the enterprise. While there is no significant difference in the performance with respect to profitability of the business, however, female owned enterprises have shown more employment growth as compared to male owned enterprises. Results of OLS regression on the basis of gender show that common factors that affect the performance of the enterprises have assorted effects for male-owned and female-owned enterprises. For female entrepreneurs, education in the most significant factor in their business success.

Recommended citation: Xing, Y. H., Farooq, M. U., & Malik, A. N. Effects of Gender on the Performance of Microenterprises in Pakistan. The International Journal of Humanities & Social Studies, 5(11). 2017

Orthomodularity and the incompatibility of Relativity and Quantum mechanics

Published in Springer, 2016

We show that orthomodularity in general and non-existence of isotropic vectors in particular decisively yield the geometry of quantum mechanics and that a fundamental reason why quantum mechanics and relativity cannot be unified is because of the non-existence of isotropic vectors

Recommended citation: Malik, A.N., Kamran, T. Orthomodularity and the incompatibility of relativity and quantum mechanics. Quantum Stud.: Math. Found. 4, 171–179 (2017).

Operator Algebras and the Foundations of Quantum Mechanics

Published in Quaid-i-Azam University, 2016

The purpose of this thesis is to analyse the Hilbert Space requirement for Quantum Mechanics. In particular, we justify sharp observables but question the requirement of completeness of the inner product space and the underlying field. We view our mathematical framework as a dynamical theory but with a mysterious probabilistic interpretation instead of the otherway round. Whenever we speak of Quantum Mechanics, we mean Non-relativistic Quantum Mechanics. To make things less messy, we assume associativity through-out. No attempt has been made to refer to QFT and statistical quantum mechanics and we use conventional mathematical symbols instead of Dirac’s formalism.

Recommended citation: Malik, A.N. Operator Algebras and Foundations of Quantum Mechanics. Diss. Quaid-e-Azam University, Islamabad, 2016 Algebras and the Foundations of Quantum Mechanics.pdf

Engineering Deutsch-Jozsa Algorithm in Cavity QED via Bragg Regime

Published in COMSATS Institute of Information Technology, 2012

The theory of quantum mechanics, developed as a limiting case to classical mechanics, notwithstanding its interpretive difficulties, has with it the elegance for paving way to a variety of applications. One such application is the implementation of a working Quantum Computer. The push one receives for using quantum principles as a measure of information and execution of algorithms is from quantum parallelism. It seems as though nature hides its enormous calculations. One such realisation of the power of Quantum Parallelism can be seen with quantum optics when one considers engineering a Quantum Computer, choosing techniques of cavity QED amongst many other competitors. The Deutsch-Josza algorithm, although of little practical signi cance, is an encouraging example which greatly reduces the time required for a specific function to be determined completely, when compared with its classical counterpart. The Hadamard gate has been physically realised, and so has the other unitary transformations in the Deutsch-Jozsa algorithm using different times of interactions in the cavity. Also, a generalisation of the Deutsch-Jozsa algorithm has been discussed, which might pave way for a working model of a Quantum Computer.

Recommended citation: Malik, A.N. Engineering Deutsch-Jozsa Algorithm in Cavity QED via Bragg Regime. Diss. COMSATS Institute of Information Technology, Islamabad, 2012. the Deutsch-Jozsa Algorithm.pdf